Best Practice Wool Scouring

Dr. Jock Christoe

Best Practice - Definition

Make a profit by producing a product in an environmentally sustainable way that is acceptable to the customer at the lowest possible cost

Factors Affecting Best Practice

- Type of wool
- Type of enterprise
- Resource issues
- Environmental issues

Type of Wool

- Combing types
- Carding types

Type of Enterprise

- Commission scourer
- Commission comber/topmaker
- Vertical mill

Resource issues

- Water
- Energy
- Chemicals
- Labour
- Spare parts

Environmental Issues

- Discharges from scouring line
- Environmental discharge regulations
- Options for effluent treatment
- Market Drivers

Layout of a Scouring Line

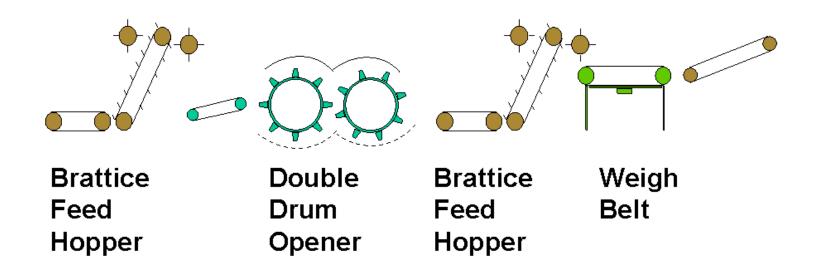
Pre-scouring Scouring Post -scouring Contaminant Recovery Wastewater **Treatment**

Best Practice - Processing

- Pre-Scouring Processes
- Scouring process
- Post-Scouring Processes
- Contaminant Recovery

Best Practice – Pre-Scouring

- Blend layout
- Blending/Opening equipment
- Extent of opening



A Typical Preparation Sequence

Best Practice – Scouring Process

- Minimising entanglement
- Scour configuration
- Mechanical issues
- Water
- Detergent

Entanglement and Processing Performance

- Definition
- Causes
- Reduction

Causes of Entanglement

- Fibre characteristics
- Opening
- Mechanical effects
- Scour configuration
- Scouring conditions

Fundamental Issues in Felting of Wool

- Scales are the major cause of felting
- scale direction affects differential friction
- fibre flexibility affects felting
- water increases differential friction and flexibility

Practical Issues in the Felting of Wool

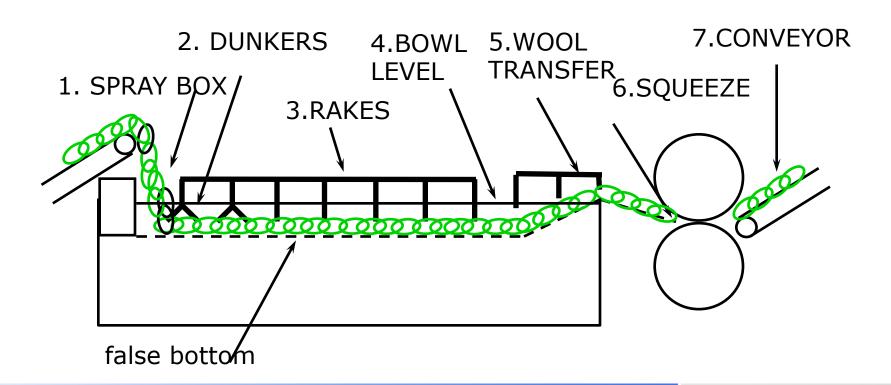
- Felting requires both fibre movement and contact
- felting is most efficient when fibres are wet
- soap and lubricants increase felting
- fibre disorientation promotes felting
- felting increases with water temperature up to a point

Entanglement

- Mechanical Elements
 - Preparation
 - Fibre movement in bowl
 - Length of bowls
- Bowl Configuration
- Operating Conditions

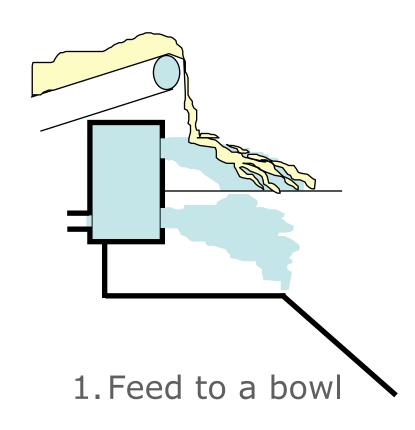
Entanglement

The concept of working points

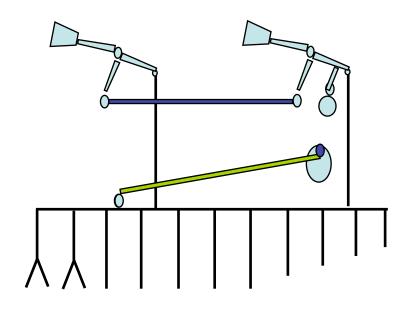


Working Points in a Typical Wool Scour



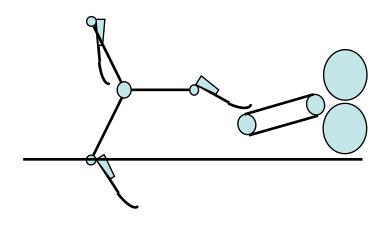


2. Dunkers

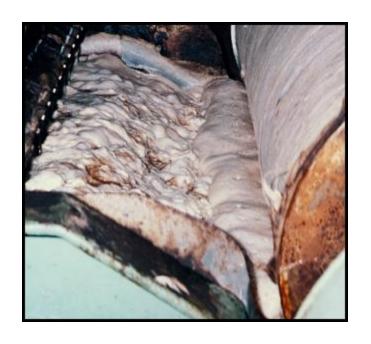


3. Transport Mechanisms

4. Water Level



5. Transfer from the Bowl



6. Squeezing Rollers

7. Wet Opening

Best Practice – Scouring Process Scour Configuration

- Number of bowls
- Length of bowls
- Shape of bowls
- Bowl function

Best Practice – Scouring Process Mechanical

- Entanglement minimisation
- Fibre cleansing
- Production of an even mat through the scour

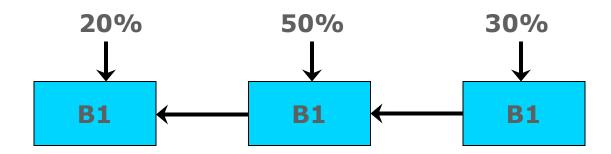
Best Practice – Scouring Process Water

Aim

Minimise water consumption without comprimising product quality

How

- Water quality
- Optimise recovery loops
- No uncontrolled discharges
- Split flows
- Recycle rinsewater



Best Practice – Scouring Process Detergent

- Type of detergent
- Method of addition
- Multiple bowl additions with countercurrent flow

Best Practice – Post-Scouring

- No wet openers
- Even mat of scoured wool
- Dryer performance

Best Practice – Contaminant Recovery Dirt Recovery

- Bowl is for scouring not a dirt recovery device
- Flow rates 5-10 KL/hour per bowl
- Manifold system connecting to bowls

Best Practice – Contaminant Recovery Wool Wax Recovery

- Three-stage recovery
- Flow rates 1KL/hour per 100kg greasy wool
- No discharge without passage through wax recovery

Best Practice - Wastewater Treatment

- Integration with scouring line
- Optimisation of contaminant recovery
- Optimisation of water use
- No uncontrolled discharges
- Separation of waste streams

Summary

