Engineering the performance of wool knitwear for softness and appearance retention

Mr Laurie Staynes

CSIRO Textile & Fibre Technology

AUSTRALIAN WOOL

What's behind the title?

- Judicious raw material selection
- Suitable processing sequence and conditions
- Application of quality and process control measures

What is the result of getting it right?

- Superior hand feel and comfort at point of sale and during wear
- Good appearance retention at point of sale and after wear/laundering
- Meeting customer performance expectation during wear and after laundering

Raw material selection

- Fibre diameter and wool quality
- Traditionally quoted as a 'quality number' given to each lot at sale by an experienced woolclasser
- Based on the finest worsted yarn quality capable of being spun from a particular lot of greasy wool
- Now measured objectively in microns

Wool quality versus micron

Quality value	Average micron	
Super 140s	~16.5 micron	
Super 120s	~17.5 micron	
Super 100s	~18.5 micron	
80s	~ 19.5 micron	
70s	70s ~ 20.5 micron	
64s	~ 21.5 micron	

Common micron/two-fold knitting yarn counts

Yarn count (Nm)	Wool diameter (micron)	
2/30s	<21.5	
2/40s	<20.5	
2/48s	<19.5	
2/60	<18.5	
2/72	<17.5	

Typical hosiery top profile

- Mean Fibre Length (Hauteur) 60-65mm
- Coefficient of Variation (Hauteur) 48%
- Coefficient of Variation of Diameter 22%
- Curvature 90°

Worsted spinning

Effect of yarn setting on fabric appearance - cockling

Spirality 80 Tex, Alpha 60, 5° Spirality

Spirality 80 Tex, Alpha 80, 10° Spirality

Spirality 80 Tex, Alpha 100 17° Spirality

Spirality 80 Tex, Alpha 120, 22° Spirality

Typical yarn steaming sequence

Sequence	Operation	Time (min)	Vacuum (Hg/bar)
1	Vacuum		25"/0.12
2	Steam	3	15″/0.48
3	Vacuum	3-5	25"/0.12
4	Steam	10	15″/0.48
5	Vacuum	5-10	25"/0.12

Autoclave for killing or setting twist in yarn

Loose fibre (fly) contamination on yarn guide/cymbal tension

Loose fibre (fly) contamination on knitting machine head

Clearing and jointing yarn knotter

Yarn waxing gravity application

Yarn waxing preloaded wax application

Measuring yarn-to-metal friction

Common hosiery yarn packages Front 5°57' Behind 9°15'

Well wound knitting package Left: OK, Right: Mis-shapen

IWTO yarn count tolerances

- <15 Nm:</p>
- 15 Nm 29.99 Nm: +/- 0.75Nm
- 30 Nm 69.99 Nm: +/- 2.5%
- >70 Nm:

+/- 0.5 Nm +/- 0.75Nm +/- 2.5% +/- 3%

Controlling knit density

- Knit density is the single most important fabric property for controlling pilling, loop distortion, fabric dimensional stability and fabric handle (softness).
- Knit density is controlled by loop length (stitch length).

If loop length is too long, fabric becomes slack and may suffer from:

- bagging
- snagging
- Iow bursting strength
- loop distortion and cockling
- pilling and facing-up
- poor dimensional stability to wear and laundering
- generally poor wash and wear performance.

If loop length is too short, fabric becomes stiff and may suffer from:

- Iow elasticity
- harsh handle
- heavy weight
- generally poor aesthetic properties.

Hatra course length measuring board

Shirley Crimp Tester

Enables course length to be measured accurately in knitted fabrics

Wisco Course Length Meter

Enables measurement and control of loop length/cover factor

Yarn Tension Meter

Measures yarn input tension – assists in control of fabric barre

Positive yarn feed – capstan roller

Assisted yarn feed – slip rollers

Positive yarn feed – Triplite tape

Positive yarn feed – conical wheel

Test equipment for measuring fabric properties

- Bursting
- Pilling

Burst strength hydraulic diaphragm method

Atlas random tumble pill tester

Key tests – pilling ICI Pill Box

Common fabric complaints: harsh/dry handle

- Wool micron too coarse
- Yarn twist level too high
- Knitting density too high
- Inappropriate finishing
- Insufficient softener application

Common fabric complaints: cockling/loop distortion

- Too coarse a micron or high percentage of coarse fibres
- Yarn setting (steaming/package dyeing) resulting in increased flexural rigidity
- Incorrect twist balance
- Large twist variations
- Large difference in knit density (fabric width) between rib border and body fabric of garment

Common fabric complaints: spirality

- Singles yarn or incorrect twist balance in plied yarns
- Feeder drop in high feeder density circular knitting machines

Common fabric complaints: facing-up

- Excessive short fibre content in yarn (more fibre ends)
- Soft twist yarn
- Low fabric density
- Wet finishing procedure (scouring/piece dyeing) too severe
- Excessive tumble drying
- Over application of fabric softener
- Borderline shrink-resist treatment level

