

for

Premium

Quality

Wool

The Reaction Diffusion System

Produced for the CRC for Premium Quality Wool undergraduate program by; Dr Barry Nagorcka, CSIRO Animal Production.

www.woolwise.com

© 1999, Wool CRC

for

Premium

Quality

Wool

© 1999, Wool CRC

Equations Can Define Biochemical Reactions

Usual form of equations \bigcirc ∂U = f(U,V)∂t Equations that define a RD system <u>∂</u>U = net diffusion of U + f (U,V) ∂t -∂-V-= net diffusion of V + g(U,V)∂t Steady state of RD system + $f(U_0, V_0)$ 0 = 0 + $g(U_0,V_0)$ 0 = 0

www.woolwise.com

Barry Nagorcka

for

Premium

Quality

Wool

© 1999, Wool CRC

The Reaction Terms of an RD System

 The simplest RD systems involve 2 chemical components that interact with each other.

- U is an activator
 - U activates its own production
 - U activates the production of V
- V is an inhibitor
 - V inhibits its own production
 - V inhibits the production of U
- V diffuses faster than U

www.woolwise.com

© 1999, Wool CRC

Barry Nagorcka

© 1999, Wool CRC

for

Premium

Quality

Wool

© 1999, Wool CRC

Characteristics of Wavelike Patterns

 The wavelength spontaneously generated is a function of the reaction and diffusion rates of U and V

 The amplitude is determined by the parameters defining the reaction and diffusion terms in the RD system equations

Barry Nagorcka