

Whole Body Differences that affect Wool Production

Produced for the CRC for Premium Quality Wool undergraduate program by; Dr. Janelle Hocking Edwards, The University of Western Australia.

CRC

for

Premium

Quality

Wool

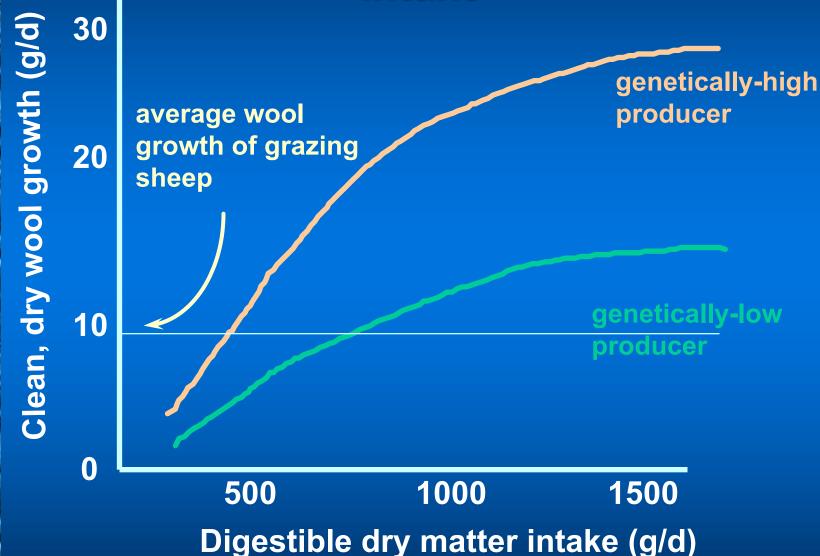
Variation between merino strains

	Fine- wool	Medium- wool	Strong- wool	%
GFW (kg)	4.4	4.5	5.4	28
CFW (kg)	2.6	3.0	3.7	28
Yield (%)	59.7	66.2	69.0	29
Density (fibres/m)m	37.1	36.8	30.4	27
Crimps per 25mm	15.8	12.3	8.0	74
🕻 Fibre diameter (µm,	19.8	20.5	24.1	43
Staple length (mm)	83	97	112	50

Janelle Hocking Edwards
Source: Dunlop (1962)

© 1999, Wool CRC

www.woolwise.com


Genetically superior sheep for wool production do not:

- tend to be bigger sheep
- eat more feed per unit live weight
- have a more effective digestion system
- have a different metabolic rate

They tend to be more efficient converters of feed to wool

Wool growth is directly related to feed intake

CRC

for

Premium

Quality

Wool

Whole body metabolism

- cystine
 - Fleece Plus < Fleece minus
- endocrinology
 - Thyroxine
- metabolites
 - urea, acetate, lactate, glutathione, K