Wool Fibre Innovation

OPTIM Technology

Dr David Phillips CSIRO Textile and Fibre Technology

AUSTRALIAN WOOL

Drivers for Wool Fibre Innovation

- Changing consumer and market need
 - Finer, lighter yarns and fabrics
 - Softness and low prickle required
 - Reduced demand for >21 µm wools
 - Product Innovation
- Challenge: How to make wool finer?

Fibre transformation provides major scope for proc Fibre transformation is the most radical form of the breeding for 1µm) What is IAAUVation?(4) ak@tAuStang@takitians makesbeutaioitia(3) ratigore the objection/trans

The supportive CSIRO R&D environment in the 1980s

- Radical innovation encouraged
 - 'Fibre modification underpins fundamental innovation.'
- Broad skill base at Geelong:
 - wool physics and chemistry know-how
 - machine design and building skills
 - fibre-to-fabric facilities
 - fibre-to-fabric know-how.
- Strong support from wool R&D funding body.

awttc 🥥

Wool fibre is extensible

 Data for 18.7 µm wool fibres (3.5 dTex)

Fibre diameter decreases with extension

Wool fibre is extensible

- Extensibility depends on:
 - moisture content of fibre
 - temperature
 - level of broken disulphide bonds (thiols)
 - needs reducing agents.

Wool fibres can be set

- Setting chemistry is well-known.
 - Wool fibres can be set in bending, extension or when twisted
- Two separate setting processes can apply:
 - glass transition temperature (cohesive)
 - thiol-disulphide interchange

Setting of wool

- Glass transition temperature
 - Cohesive (released in cold water)
 - e.g., wrinkles in trousers.
- Thiol-disulphide interchange
 - Temporary (released in hot water at 70°C)
 - stability of a wool fabric surface after pressing using mild steaming conditions (e.g. 87°C)
 - treat a freshly spun yarn in steam at 87°C for several minutes.
 - Permanent (stable to hot water at 95°C)
 - stability of a wool fabric surface after pressure decatising at 110°C
 - bend and hold a fabric in boiling water for one hour
 - extend and hold a fibre in boiling water for one hour

The Challenge

- How to extend and set fibres in practice?
- What were the consequences?
- What were/are the opportunities?

Stretching of fibres

- Too difficult to stretch fibres separately.
- Stretch against twist provides fibre cohesion and control.
- Stretching of slivers using false twist developed.

Stretching of fibres

- Too difficult to stretch fibres separately.
- Stretch against twist provides fibre cohesion and control.
- Stretching of slivers using false twist developed.

Commercial Optim plant

Woolmark/Andar commercial plant

Productivity: ~ 30-40 kg/hr

6 machines globally (including 5 Andar machines)

Setting of extended wool fibres

Temporary or permanent set possible.

- Stress relaxation occurs in stretched fibres.
- Reducing agent generates thiols.
- Thiols aid the relaxation process by thiol-disulphide interchange.
- Oxidation step rebuilds disulphides.
- Time and temperature parameters important.
- Choice of conditions produces temporary or permanent set.

Commercial Optim plant

Optim™ fibres

- At present, two fibre types allow product innovation:
 - OPTIM[™]*fine* permanent set
 - OPTIM[™]max temporary set.

The OPTIM[™]*fine* process

WOOL SLIVER (e.g., 19 μm)

TWIST

STRETCH

PERMANENTLY SET

OPTIMTM*fine* **FIBRE** (e.g., 15.5 µm)

Cross-sectional shape of OPTIM[™]fine

Parent Wool

OPTIM[™]*fine* fibres

Fibre structure

Wool

OPTIM™fine

Alpha keratin diffraction pattern

Beta keratin diffraction pattern (silk-like)

Optim™ fine properties

AUSTRALIAN WOOL

E TRAINING CENTRE

Disadvantages

- Low wet modulus
 - affects top and package dyeing
 - more care needed in finishing
 - poor wrinkling behaviour

OPTIMTMfine fibre properties

	Optim™ Fine	Wool	Viscose	Silk
Linear density (dTex)	2.3	3.7	1.7	1.2
Tenacity (cN/Tex)	14.5	11.5	22-26	39
Extensibility (%)	19	38	20-25	18
Wet modulus (cN/Tex)	51	95-100	40-50	220

The OPTIM[™]max process

WOOL SLIVER

TWIST

STRETCH

TEMPORARY SET

OPTIMTM*max* **FIBRE**

Retractable wool fibre ~ 25%

Bulk generation in yarn

Yarn bulk

Yarn and fabric bulk (wool with Optim[™]max)

	Yarn count (Tex)	Yarn bulk (cm ³ /g)	Fabric bulk (cm ³ /g)	Fabric weight (g/m ²)
Wool	R75/2	12	3.5	287
Wool with Optim™ max (40%)	R74/2	17	6.3	225
Wool	R478/3/3	6	7.8	
Wool with Optim™ max (40%)	R435/3/3	12	10.5	

Optim™*max* **properties**

Benefits:

- Retractable
- Generates bulk when blended
- Good for 'warm without weight' products
- Basis for further product innovation.

Disadvantages:

Extra relaxation process required in yarn processing.

Commercial position

- Process patented
- Woolmark was sole licensee for manufacture and sale of Optim machines now part of AWI merger .
- Detailed technology transfer packages provided to Woolmark from CSIRO
 - Fibre to fabric processing advice available
- Optim[™] machines are operating in China and Japan.
- Arcana machine operating in Australia.

Further developments of Optim

Currently Optim demand is limited by supply, fibre cost and performance issues.

The following will enhance the opportunity for Optim products:

- reduce cost of production
- improve wet fibre and fabric properties

AUSTRALIAN WOOL

EXTILE TRAINING CENTRE

develop new fibre products

awtte

Black box approach to fibre modification

- Modify process to engineer wool fibres for unique product applications.
- Optim example:
 - fibre tenacity
 - elongation to break
 - crimp
 - range of fibre types possible.

Ancient thoughts on problem solving

'By always thinking unto them, I keep the subject constantly before me and wait till the first dawnings open little by little into the full light.'

Sir Isaac Newton (1642-1727)

Final word on innovation

Product innovation is largely a process of problem solving combined with passion and persistence, but, above all, arises from the need to think and rethink about needs, problems and opportunities.

David Phillips, 2007

Next

Questions

- Visit to Optim[™] prototype plant
- Show of Optim[™] products

