Textile colouration

Mr Mac Fergusson RMIT University

Wool fibre production

- Relatively stable over the past five years.
- Some increase in production possible as flocks increase after prolonged drought conditions.
- Production of finer qualities increasing as farmers seek to capitalise on higher prices.

Dyes for wool

- Acid dyes
 - Level dyeing type
 - Milling type
 - Chrome dyes
 - Premetallised
 - 1:1 Premetalised
 - 2:1 Premetalised
 - Reactive

Natural dyes versus synthetic dyes

- Natural dyes generally earthy colours, shades vary with seasons.
- Colour fastness generally low.
- Very polluting, due to the use of heavy metals.
- Synthetic dyes bright shades of good allround fastness when applied correctly.

Synthetic dyes

- William Henry Perkin
- discovered mauvine in 1856,
- using aniline as
- raw material.

Classification by application

- No universal dye.
- Different dyes are required for different fibres.
- Therefore, differing dyeing conditions are required when fibre mixtures are used.
- Different dyes are used to meet specific requirements.

Premetallised dyes

- Applied to both polyamide and wool
- 1:1 type specifically for wool but can be applied to nylon. Black often falls into this category. When applied to wool dyed at very low pH 2.5-3.0 using H₂SO₄.
- Shades generally earthy and dull; no bright blues, reds or greens.
- 1:2 type dyed from neutral bath using amphoteric amine ethoxylate as levelling agent.

Fast acid dyes

- So-called milling dyes larger molecule, more difficult to dye level, dyed under slightly acid conditions using (NH₄)₂ SO₄ and levelling agent.
- Full range of shades.
- Some not fast enough for washable wool, i.e. wool that has been made shrink resistant. Reactive wool dyes are normally used for this product.

Wool reactive dyes

- Introduced in the 1960s.
- Particularly suitable for dyeing washable wool, where bright clean shades are required.
- Dye combines chemically with the fibre to form a very strong bond that will withstand domestic washing.

Choice of dyes

- Shade
- Fastness requirements
- Cost
- Dyemakers pattern cards assist the dyer in making the choice.

Dyestuff selection

- Cost cheapest combination.
- Technically the best without cost considerations.
- Combination that gives the desired properties to the customer's specification at the cheapest possible price.
- Machinery considerations can affect dyestuff selection.
- Fibre type can also influence selection criteria.

When can colour be introduced?

- Loose fibre
- Top or sliver
- Yarn
- Fabric
- Garment
- Printing, either fabric or garment.

Dyeing machinery

- Different machines are required.
- Loose fibre, yarn and top use similar machinery. Liquor is circulated through the material.
- Fabric dyeing the material is moved through the liquor, or the fabric and liquor move together.

Example of unlevelness

Channelling due to density variations

HT Jet dyeing machine

Nature of light

Light is an electromagnetic radiation. Visible light from 350nm -700nm. Below 350nm - ultraviolet radiation. Above 700nm – infra-red radiation.

Human beings can perceive specific wavelengths as colors.

How do we see colour?

- The human eye contains receptors: rods and cones.
- Rods are specific to the intensity of light.
- Cones distinguish colours:
 - one cone is very sensitive to red
 - one cone is very sensitive to blue
 - one cone is very sensitive to green.

Colour matching systems

Colour matching

Three factors influence colour matching:

- 1. The object whether rough, smooth, glossy or opaque will affect the colour.
- The illuminant standard lights D65 or TL84 are used for matching. Colours can change dramatically in different lights. This is known as 'metamerism'.
- **3. The observer** the eye influences colour perception.

Metamerism

- This occurs when the colour matches under one light but not under another.
- Typical light sources:
 - D65 is standard northern daylight
 - TL84 fluorescent light, usually in stores
 - tungstan filament globes.
- A perfect match is made under D65
 - but may not match under other light sources.

Spectrophotometer

Defective colour vision

- So-called 'colour blindness'
 - affects about 8% of the male population.
- It is due to defective receptors in the eye.
- About 1% have only monochromatic vision i.e. black and white.
- Can be tested using the Ishihara test plates.

Fabric finishing

Any process that improves the performance or characteristics of a textile fabric.

Temporary or permanent.

Process may be either mechanical or chemical.

Drying

- Following any wet process, the first operation finishing is drying.
- The stenter is the most common dryer.
- The fabric is held during the drying operation on pins or clips. This ensures control of the finished width.
- Polyester wool blends are heat-set after scouring prior to dyeing.

The Montforts Stenter

The stenter

Types of finishes

Mechanical finishes

- Milling or felting of wool fabric
- Pressing
- Decatising
- Brushing or raising. =
- Singeing
- Shearing

Chemical finishes

Shrink-resist treatments for wool Flame proofing Water proofing Micro-encapsulated finishes.

Milling

- Milling an important process, particularly for woollen fabrics.
- Process relies on the both the scales of the fibre and its elasticity.
- Some worsted fabrics may be lightly milled to achieve cover.
- Modern milling machines can include scouring.

Flexicom machine - Zonco

Unmilled fabric

Milled fabric

Raising

Increasing the bulk of the fabric:

- to give the fabric a pile
- commonly used for blankets and polar fleece
- heavy raising using wire
- light treatment using emery paper to give 'peach skin' effect.

A schematic diagram of a double-action raising machine

Raising system

AUSTRALIAN WOOL

TEXTILE TRAINING CENTRE

The Raising Machine

Raising machine

Singeing

- Polyester-wool blends are singed, usually after dyeing, to minimise pilling.
- The fabric is passed over an open gas flame.
- Both the face and back are singed at the same time.

Shearing or cropping

- This process removes surface loose fibre. The fabric is usually brushed to lift loose fibres to the surface.
- It is important in worsted fabrics to have a clear finish.
- Raised fabrics are cropped to give a uniform surface finish – common to woollen fabrics.
- Woollen flannels a milled cloth is cropped to give a uniform surface.

Shearing or cropping

- This process removes surface loose fibre. The fabric is usually brushed to lift loose fibres to the surface.
- It is important in worsted fabrics to have a clear finish.
- Raised fabrics are cropped to give a uniform surface finish – common to woollen fabrics.
- Woollen flannels a milled cloth is cropped to give a uniform surface.

Cropping/shearing machine

Decatising

- Wet decatising is used to give set to the fabric prior to wet processing.
- Finish decatising imparts some lustre to the finished fabric.
- Conveys a degree of set to the fabric.
- Increases dimensional stability.
- Improves the finished handle of the fabric.

Vapofinish from Bisio, Italy

Chemical finishes

- Modify the fibre surface:
 - to enhance performance
 - to modify wearer performance.
- Change the properties of the fibre:
 - to increase resistance to various agents
 - Insects.

Antishrink wool

- Removes scales and changes elastic properties.
- Current treatments consist of chlorination and the addition of a resin.
- Chlorination can be either wet or dry.
- This treatment changes the dyeing properties of the fibres.
- Shrink-resist wool dyes darker.

Non-shrink wool

- Two processes are used:
 - For top treatment with gaseous chlorine (the KroyProcess, a continuous process).
 - Wet chlorination using the sodium salt of di-chloroisocyanuric acid (Basolan DCTM BASF).
- Chlorination modifies the surface scale structure:
 - A cationic resin, Hercosett, is usually applied as an after treatment.
 - The resin treatment covers any scales that have not been completely damaged.

Flame proofing

- Important process for special fabrics:
 - Firefighters' uniforms, aircraft upholstery, military applications.
- Wool has a high ignition temperature 570°-600°C.
- For certain applications a specific treatment is required.
- A durable flame retardant is obtained using zirconium hexafluoride complexes.

Water-resistant finishes

- Simplest utilises the principle of aluminium soaps.
- This is the standard shower-proof process.
- Does not yellow the fabric.
- Fluorochemical finishes provide both oil and water repellency.
- Silicone polymers are used extensively as water repellent finishes.

Micro-encapsulated finishes

- What is micro-encapsulation? A miniature container that protects the chemical from evaporation, oxidation and contamination until its release is triggered.
- Typical size 3 9 microns.
- Release can be triggered by gentle rubbing.
- Applied to the fabric together with a reactive resin, so that the micro-capsule will withstand normal household washing.

Courtesy of Devan Chemicals, Belgium

Microcapsules applied per m².

Applications for micro-capsules

- Fragrances
- Skin care products
- Anti-microbials
- Deordorants
- Odour masking products

AUSTRALIAN WOOL

TEXTILE TRAINING CENTRE

- Insect repellents
- Cosmetic oils
- Vitamins

awtte 📢

Inspection

 Final operation in the finishing process.

AUSTRALIAN WOOL

TEXTILE TRAINING CENTRE

- Consistent quality.
- Reduces returns.

Thank you

