Optimising fabric quality, finishing processes and machinery through the use of fabric objective measurement

Dr Allan De Boos Australian Wool Innovation

AUSTRALIAN WOOL

What is this talk all about?

- Fabric quality.
- The role of finishing in optimising fabric quality.
- Optimisation of finishing techniques:
 - most evaluation of fabrics and process optimisation is done by subjective evaluation of the finished or partially finished fabric.
- This talk will outline the use of simple techniques of fabric objective measurement to supply quantitative data on which decisions affecting finishing and fabric quality can be based.

Lecture in two parts

- Part 1
 - Fabric quality Can it be measured?
 - Fabric Objective Measurement.

AUSTRALIAN WOOL

- Prediction of faults examples of faults.
- Part 2
 - Optimisation of finishing operations using FOM.
 - Correction of faults.

What determines fabric quality

- Optimised handle.
- Evenly and reproducibly coloured.
- Gives good appearance in garment.
- Good appearance in wear:
 - does not shrink in laundering
 - does not distort in wear.
- Appropriate functional properties:
 - good abrasion resistance, tear strength etc.
 - FIT FOR PURPOSE.
- Can quality be measured?
 - No, but you can measure many of the properties that affect quality.

AUSTRALIAN WOOL

Processes in wool finishing

WET

- Pre-setting
- Scouring
- Milling
- Drying

DRY

- Conditioning
- Pressing
- Cropping
- Raising
- Decatising

Effects of finishing processes

- Wanted effects:
 - cleaning
 - flat finish
 - drying
 - control of fabric dimensions
 - optimised dimensional stability
 - optimised handle
 - properties consistent with good garment appearance
 - required functional properties.

AUSTRALIAN WOOL

Effects of finishing processes

- Side effects:
 - stretching
 - distortion
 - running marks
 - skew
 - cockling
 - stiffness, wrong handle
 - impaired dimensional stability.

What is fabric objective measurement?

- The term given to the measurement of those low-stress properties of wool fabrics related to its aesthetic characteristics:
 - handle
 - appearance after garment manufacture
 - appearance in wear.
- Usually involves a number of instruments and measurements.

Why do we need fabric objective measurement?

- We need to predict:
 - performance
 - Appearance.
- Cost of fabric ~150.
- Cost of refinishing ~15.
- Cost of suit ~1000.
- The picture on the right illustrates that it is often too late when the fabric has been cut.

AUSTRALIAN WOOL

Fabric objective measurement is a great tool for finishers

- Ensure that a fabric is 'on track'.
- Ensure that machinery is operating optimally.
- Assist in choice of finishing routes:
 - Which route gives optimum balance of handle and cost?
 - Which route is most appropriate for that 'special' customer?

What fabric properties are associated with fabrics aesthetics?

- Thickness, compressibility.
- Bending properties.
- Extensibility.
- Dimensional stability.
- Pressing performance.
- Surface properties.

SiroFAST

- A set of instruments developed by CSIRO Textile and Fibre Technology in Australia.
- Uses simple instruments to measure important fabric properties.
- Simple to use.
- Suited to a mill environment.
- Gives detailed information for interpretation of data and correction of fabrics.

AUSTRALIAN WOOL

TEXTILE TRAINING CENTRE

Fabric assurance

SIMPIF

BY

fabric specifications • finishing routes • stability of finished fabrics tailoring performance • final garment appearance

SiroFAST-1 Thickness Meter

AUSTRALIAN WOOL

- Measures the thickness of the fabric under two separate loads.
- Measurements made before and after fabric relaxation (in water or steam).
- Predicts:
 - fabric softness
 - fabric 'fullness'
 - stability of the finish.

SiroFAST-2 Bending Meter

AUSTRALIAN WOOL

- Measures the bending length of fabric.
- The bending length is used to calculate the bending rigidity of the fabric – a measure of STIFFNESS.

SiroFAST-3 Extensibility Meter

- Measures fabric extensibility in warp, weft and bias direction.
- From the bias extensibility the shear rigidity of the fabric can be calculated – a measure of STIFFNESS.
- Predicts 'stretchiness' and 'stiffness'.

Shear deformation.

SiroFAST-4 Dimensional Stability Test

- Measures <u>both</u> components of the dimensional stability of wool:
 - relaxation shrinkage
 - hygral expansion.
- A simple test method does not require an 'instrument'.
- Predicts:
 - shrinkage in garment making

AUSTRALIAN WOOL

TEXTILE TRAINING CENTRE

 panel distortion in humid atmospheres.

Sirolan PressTest

- Determines the ease in which fabric can be pressed to form a good crease, flat seam or sharp pleat.
- Measures the angle adopted by a 180-degree fold that is pressed under standardised conditions and allowed to relax.

Technique used in Sirolan PressTest

Interpreting SiroFAST data

- The key to the use of fabric objective measurement is not in doing the tests but *interpreting the data*.
- SiroFAST data is interpreted through the use of a chart or 'fingerprint'.
- This chart can be used to:
 - identify fabric faults
 - predict the consequences of that fault
 - identify re-finishing routes.

Effect of excessive relaxation shrinkage

Effect of excessive hygral expansion

Effect of inadequate warp formability

Effect of poor pressing performance

Kawabata evaluation system - fabrics

- SiroFAST is not the only set of instruments for Fabric Objective Measurement.
- KES-F developed in Japan in 1960s.
- Four instruments:
 - tensile shear
 - bending
 - compression
 - surface properties (e.g. friction).

AUSTRALIAN WOOL

Simple instruments

Shirley bending meter.

Tensile tester.

Other important test methods

AUSTRALIAN WOOL

TEXTILE TRAINING CENTRE

- Crease angle test.
- For measuring PERMANENT set imparted in finishing operations, including piece dyeing.

Not to be Confused with Sirolan PressTest.

Other important test methods

- Moisture content:
 - moisture meter
 - oven dry weight.
- Air permeability:
 - used to assess fabric flatness.
- Colour/yellowness:
 - measured using a spectrophotometer.

