

Premium

for

Quality

Wool

The Genetics of CV of Fibre Diameter

Produced for the CRC for Premium Quality Wool undergraduate program by; Dr. Brad Crook, The University of New England.

www.woolwise.com

© 1999, Wool CRC

Between-strain and between-flock variation in CVFD

Brad Crook Source: Taylor and Atkins (1992)

© 1999, Wool CRC

Pre

© 1999, Wool CRC

Phenotypic variation in CVFD

1	FLOCK	St. deviat	St. deviation	
20		of CVFD		
1.1		(%)	Shorn	
RC	Great Southern Agricultural Research Inst.	(WA)		
2	Hogget rams	2.37	Spr.	
or	Commercial environment	2.46	Spr.	
22	Stud environment	2.49	Spr.	
mium	Mature ewes	2.51	Spr.	
ality	Turretfield Research Centre (SA)			
¥-,	10 mth of age (6 mth wool growth)	2.63	Aut.	
lool	16 mth of age (6 mth wool growth)	2.68	Spr.	
1	CSIRO (Armidale)			
Ch.	Fine wool (10 mth wool growth)	2.18	Spr.	

Premi

Quali

© 1999, Wool CRC

Heritability estimates of CVFD

2	<u>FLOCK</u>	<u>Herit</u> .	<u>Shorr</u>		
20	Great Southern Agricultural Research Inst. (WA)				
CRC	Hogget rams	0.45	Spr.		
	Commercial environment	0.53	Spr.		
for	Stud environment	0.74	Spr.		
remium	Mature ewes	0.58	Spr.		
	Turretfield Research Centre (SA)				
Quality	10 mth of age (6 mth wool growth)	0.59	Aut.		
Wool	16 mth of age (6 mth wool growth)	0.61	Spr.		
200	CSIRO (Armidale)				
- 14	Finewool (10 mth wool growth)	0.33	Spr.		

Brad Crook Source: Greeff (1996)

Testing Costs

- Staple strength:
 - 10 staples per animal, plus washing yield
 - AWTA test using ATLAS: approx. \$9 per animal
 - Agritest SB (restricted availability): approx. \$3 per animal
 - therefore use of staple strength measurements likely to be limited to 2nd-stage selection

• CVFD:

- midside sample
- flock testing lab's: from \$1.80

CRC

for

Premium

Quality

Wool

© 1999, Wool CRC

Brad Crook

Correlation between 10 and 16 month records

CRC		<u>Phenotypic</u>	<u>Genetic</u>
for	Staple Strength	0.23	0.68
remium	CVFD	0.62	0.92
Quality			
Wool			

Brad Crook Source: Ponzoni et al. (1995)

www.woolwise.com

© 1999, Wool CRC

Wool

© 1999, Wool CRC

Efficiency of using CVFD to improve SS compared to direct selection for improved SS

= 0.80

Selection using CVFD to improve SS could be 80% as efficient as direct selection for improved SS.

Brad Crook Source: Greeff (1996)

www.woolwise.com