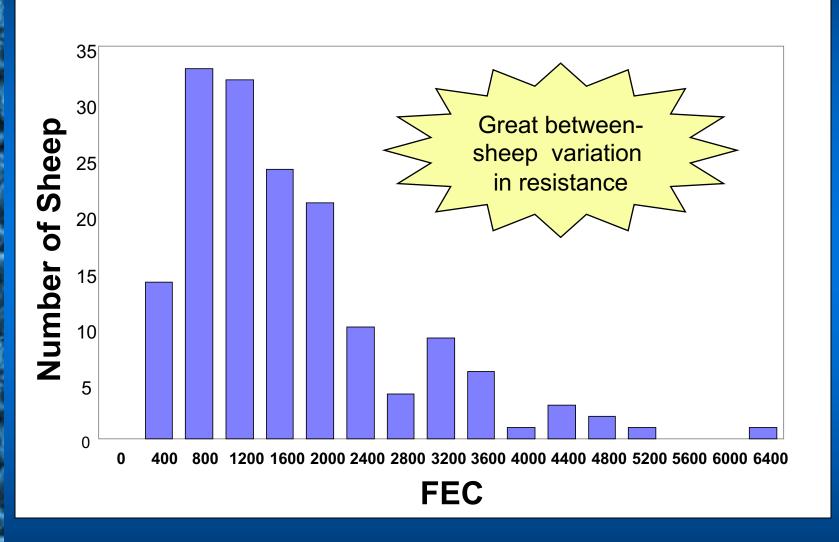


Genetic Variation in Disease Resistance Traits

Produced for the CRC for Premium Quality Wool undergraduate program by; Dr. Rob Woolaston & Dr. Sandra Eady, CSIRO Animal Production.

CRC


for

Premium

Quality

Wool

Typical distribution of FECs

© 1999, Wool CRC

Heritability estimates

Flystrike	Merino	incidence	0.10-0.58
Fleece rot	Merino	Merino severity, incidence	
Dermatophilosis	Merino	severity, incidence	0.05-0.44
Scouring &dags	Merinos Romneys	severity, incidence	0.08 0.12-0.36
Footrot	Merino	severity, incidence	0.15-0.29
	Romney	severity, liability	0.14 0.17-0.28
	Mixed	Incidence liability	0.03-0.34 0.07-0.55
Facial eczema	Romney	gammaglutamyl- transferase	0.45±0.03
Rye grass staggers	Romney xCoopworth	incidence liability	0.07±0.02 0.27±0.08

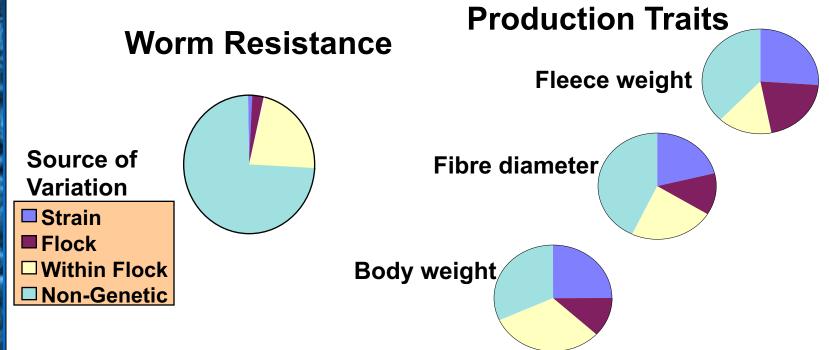
CRC

for

Premium

Quality

Wool


Heritabilities - Roundworms

	Age	FEC Counts	Heritability	Source
Natural mixed	6,12m	2x	0.42±0.14	Cummins et al. 1991
infections	10,22m	1x	0.16±0.12	Eady et al. 1996
Artificial	18m	1x	0.23±0.13	Piper 1987
H.contortus	4-5m	2x	0.30±0.10	Albers et al. 1987
	4-5m	1x	0.29±0.03	Woolaston & Piper 1995
	6-8m	1x	0.30±0.13	Eady et al. 1996
Artificial <i>T.</i>	4-5m	5x	0.41±0.04	Woolaston et al. 1991
colubriformis	5-13m	1x	0.20±0.11	Eady et al. 1996

Rob Woolaston & Sandra Eady Source: Eady et al. (1996)

Sources of Genetic Variation

- Most genetic variation in worm resistance is found within flocks
- There is very little variation between bloodlines and strains of Merino
- This contrasts with the situation for wool and growth traits
- Resistant sires can be found within existing sources of rams

Rob Woolaston & Sandra Eady Source: Eady et al. (1996)

CRC

for

Premium

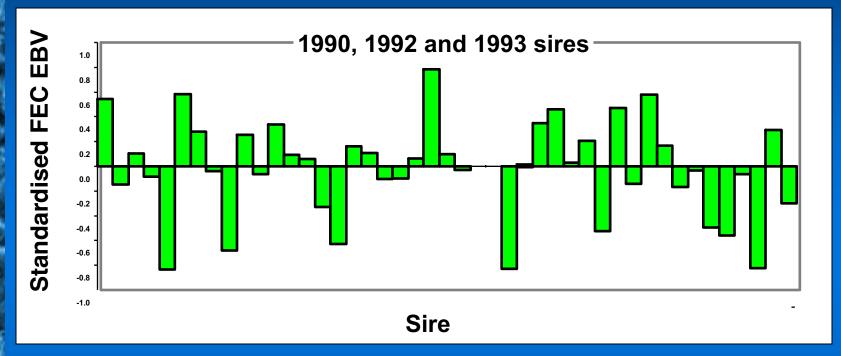
Quality

Wool

www.woolwise.com

500

CRC


for

Premium

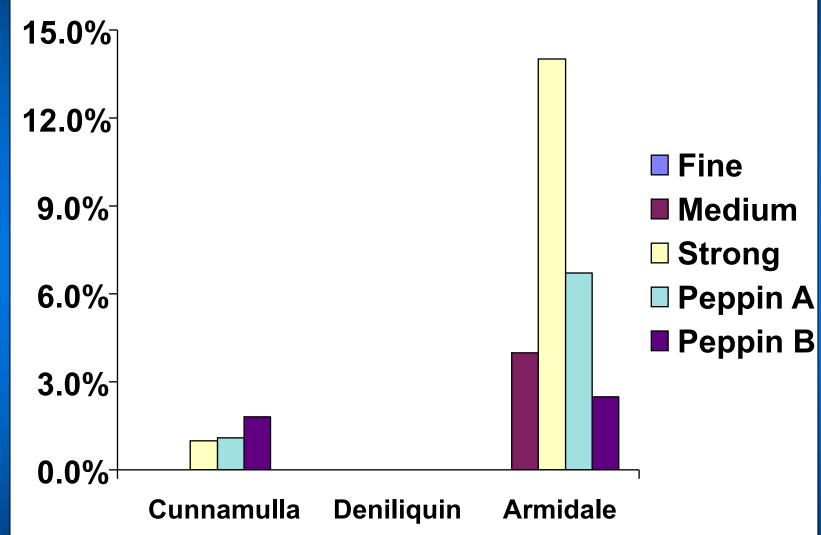
Quality

Wool

Faecal egg count EBVs for New England Sire Evaluation Scheme

- Some Sire Evaluation Schemes include resistance to worms
- There is much variation within ram sources
- High-producing rams can be highly resistant

CRC


for

Premium

Quality

Wool

Incidence of Fleece Rot

What gains are possible with fleece rot / body strike?

CRC

for

Premium

Quality

Wool

 Annual reductions of 1.0-1.4% in fleece rot and 0.4% in body strike incidence in Merinos