

How does a sheep learn about a new food?

Produced for the CRC for Premium Quality Wool undergraduate program by; Dr. Geoff Hinch, The University of New England.

© 1999, Wool CRC

Identification of Food

- Cues
 - Visual (general location)
 - Olfactory or texture (mouth)
 - Innate responses?
 - Taste (swallow)
 - Innate responses?
- Sensory Specific Satiety
 - concept that animals will always include a small amount of a less preferred food.

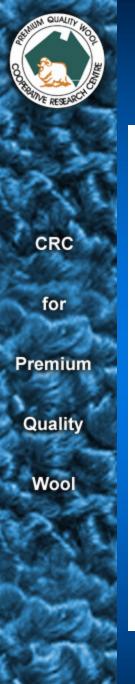
Effects of sweet, sour, salt and bitter on **lucerne intake of sheep**

Table 1.3. The effect of various concentrations of sweet (sucrose), sour (HCl), salt (NaCl), bitter (urea) and umani (monosodium glutamate, MSG) on intake of lucerne pellets.

	Low Medium High		
Sucrose	D	b	b
HCl NaCl	C	C	D
	C	C	C
Urea MSG	b	b	D
MOU	a	a	а

Concentration

a


Source: Grovum and Chapman (1988).

a

a = Increased intake compared to control.

b = Decreased intake compared to control.

c = Similar intake compared to control.

Sensory Impairment and learning about wheat

Table 1.2. The number (total of 16 per group) of sensory impaired sheep which accepted wheat over 5 days, and the mean wheat intake (grams per head) for five days.

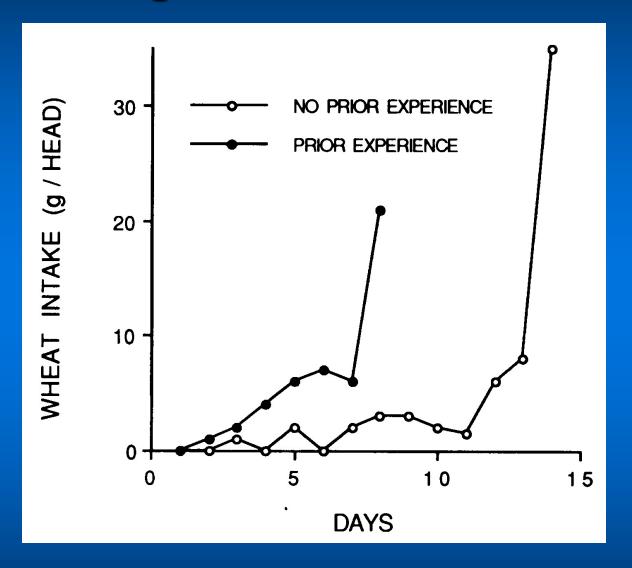
Treatment	Number of animals feeding by day 5	Mean wheat intake/head (g)
Blind	14	460
Deaf and anosmic	13	362
Deaf	14	316
Deaf and blind	9	305
Control	15	198
Deaf, blind and anosmic	6	177
Anosmic	14	165
Anosmic and blind	9	141

Experience

- Neophobia "fear of new"
 - Feeding sequence?
 - Do animals establish a pattern of "testing?
 - Overcome by learning (social facilitation)
 - The rate of learning about new foods is influenced by maternal food choices
 - Cue associations and early experience
 - There is a possibility that animals are more sensitive to some sensory cues early in life

s file

CRC


for

Premium

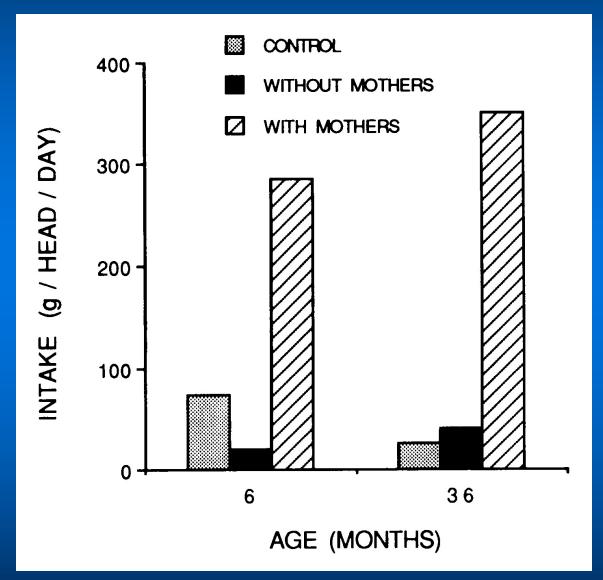
Quality

Wool

Learning about a new food - wheat

Social effects on learning about food

CRC


for

Premium

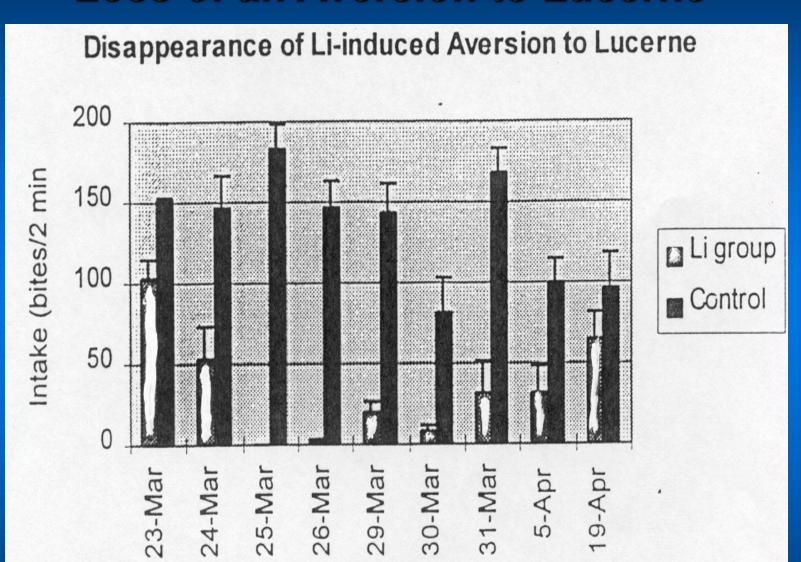
Quality

Wool

© 1999, Wool CRC

Sensitive Period for Cues?

- Cues: Flavour and Odour
 - learnt via olfactory learning vs innate?
 - sensitive period in early life?
 - hormonal modulation of olfactory sensitivity?
- Flavour Enhancers
 - Not an issue for grazing animals but of interest to feed manufacturing companies for supplementary feeds and or specialised feeds for monogastrics.



Post-Ingestive Consequences

- The memory about a food is associated with the link between cues and postingestive outcome.
- Negative post-ingestive outcome creates an Aversion?
 - Toxins alkaloids, phenolics (tannins), terpenoids
- Positive post-ingestive effects difficult to demonstrate. Maybe associated with the correction of a nutrient imbalance?

CRC for **Premium** Quality Wool © 1999, Wool CRC

Loss of an Aversion to Lucerne

