Semi-arid Rangelands: Managing Grazing Pressure

Produced for the CRC for Premium Quality Wool undergraduate program by; Dr. Brad Crook, The University of New England.
Rangelands: the grazing process

1. species selection

- ephemerals
- more palatable perennials
- reserve species (lower palatability)
- species that are rarely / never eaten

- differential periods of rest from grazing:
 - favours low palatability species
 - discourages high palatability species

Rangelands: the grazing process
2. spatial distribution of grazing pressure

• non-uniform grazing pressure:
 – high pressure: areas with palatable species and low tree / shrub density
 – low pressure: areas with species of low palatability species and mod. / high tree and shrub densities

• location of water supply:
 – declining pressure with increased distance from water, but relatively uniform within 3 km of water
 – high dependency on water in saltbush communities
Impact of Grazing on Community Composition and Productivity

<table>
<thead>
<tr>
<th>Community</th>
<th>Nature of change</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saltbush (A. vesicaria) shrubland, NSW</td>
<td>A. vesicaria replaced by Sclerolaena spp or grasses</td>
<td>No change in animal production, increased susceptibility to erosion</td>
</tr>
<tr>
<td>Mitchell (Astrebla) grassland, Qld.</td>
<td>Reduction in Aristida spp, increase in ephemerals</td>
<td>Increased animal production, less seed in wool.</td>
</tr>
<tr>
<td>Hummock (Triodia pungens) grasslands, WA</td>
<td>Eragrostis spp and Eriachne spp lost and replaced by T. pungens</td>
<td>Carrying capacity halved</td>
</tr>
<tr>
<td>Mulga (Acacia aneura) woodland, WA</td>
<td>Increased component of Aristida spp</td>
<td>Reduced animal production</td>
</tr>
<tr>
<td>Poplar Box (Eucalyptus populnea) woodland</td>
<td>Replacement of perennial grasses by shrubs</td>
<td>Reduced animal production, increased susceptibility to erosion, reduced soil moisture status</td>
</tr>
</tbody>
</table>

Total Grazing Pressure

- Grazing pressure exerted on rangeland pastures is derived from:
 - livestock: sheep and cattle
 - feral animals: rabbits and goats
 - native mammalian herbivores: kangaroos

- Diet selectivity relative to sheep:
 - cattle: less selective, eating more of dominant species (grass or saltbush) and less of smaller grasses, medics and forbs
 - goats: more browse (≥ 2m) so more of palatable trees and shrubs BUT obtain most of forage needs from same herbage species as sheep and similar selectivity
 - kangaroos: more grass and less browse and forbs
 - rabbits: green feed & certain woody shrub / tree seedlings
The influence of kangaroos on sheep productivity in the semi-arid woodlands of western NSW

- Mulga woodland, 170 km n/west of Cobar:
 - free of inedible shrub
 - containing a wide variety of perennial grasses

- Merino wether hoggets:
 - 20-25 kg, 6 mths age
 - new group each year for three years

- Kangaroos:
 - mainly western greys + few reds

- Stocking rates:
 - sheep only: 0.3 to 0.8 sheep per hectare
 - equal no.s of sheep & kangaroos: 0.2 to 0.53 sheep per ha
Clean fleece weight, weight gain and sheep stocking rate, with (■) and without (●) 15 kg / ha kangaroo.

Adapted from: Wilson (1991)
Conclusions

- kangaroos competed directly with sheep, with both animal species consuming the same forage species

- relative effect of kangaroo grazing:
 - on forage removal:
 - 1 kangaroo = 0.75 sheep, of equal weight
 - on sheep production
 - 1 kangaroo = 0.6 sheep, of equal weight

- effects of kangaroo grazing diminished when feed was abundant

- sheep productivity in drier times would be increased by controlling kangaroo numbers
The characteristics of some major woody plants in the semi-arid woodlands

<table>
<thead>
<tr>
<th>Species</th>
<th>Forage value</th>
<th>Response to normal grazing pressure</th>
<th>Response to immed. effect of fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow-leaf hopbush (Dodonaea attenuata)</td>
<td>V. low</td>
<td>Increase</td>
<td>Decrease</td>
</tr>
<tr>
<td>Green turkey-bush (Eremophila gilesii)</td>
<td>Nil</td>
<td>Increase</td>
<td>Decrease</td>
</tr>
<tr>
<td>Budda (Eremophila mitchellii)</td>
<td>Nil</td>
<td>Increase</td>
<td>Sl. decrease</td>
</tr>
<tr>
<td>Turpentine (Eremophila sturtii)</td>
<td>Nil</td>
<td>Increase</td>
<td>Sl. decrease</td>
</tr>
<tr>
<td>Poplar Box (Eucalyptus populnea)</td>
<td>Nil</td>
<td>Stable</td>
<td>Stable</td>
</tr>
</tbody>
</table>

Source: Harrington et al. (1984)
• a successful burn requires at least 80 g/m² of grass mass as fuel:
 – grazing pressure influences ability to achieve adequate fuel supply
 – rainfall pattern needed for this amount may occur only 1 in 20 years
 – lack of management experience and confidence in use of prescribed fire
Five principles of grazing management of rangelands

- “conservative” stocking
- an appropriate distribution of grazing pressure
- strategically timed spelling
- early destocking in dry times
- management of total grazing pressure