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Simple Summary: This review explores the importance of sperm DNA integrity in assisted repro-
ductive technologies used in both livestock production and human fertility treatments. Assisted
reproductive technologies have revolutionised animal breeding by enabling the widespread dis-
semination of elite male genetics and overcoming human infertility challenges, with male-factor
infertility being a significant concern. Traditional semen quality assessments focus on parameters like
volume, concentration, motility and morphology; however, DNA integrity, a potential key parameter
in assessing semen quality, is not included despite being studied for many years. Various assays are
used to measure sperm DNA fragmentation, but results on its impact on fertility are inconsistent,
resulting in a lack of standardisation of assessment methodology. This review consolidates findings
across species and DNA integrity assays into a comprehensive table, highlighting DNA integrity as a
potential biomarker for male infertility and predictive value for assisted reproductive technology
outcomes in livestock and humans.

Abstract: Sperm DNA integrity is increasingly considered a useful measure of semen quality in
mammalian reproduction. However, the definition of DNA integrity, the ideal means by which it
should be measured, and its predictive value for fertility remain a topic of much discussion. With an
emphasis on livestock species, this review discusses the assays that have been developed to measure
DNA integrity as well as their correlation with in vitro and in vivo fertility.
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1. Introduction

Assisted reproductive technologies (ARTs) are frequently used in both livestock pro-
duction and human fertility treatment. In animal industries, these technologies have
allowed widespread dissemination of elite genetics, contributing to advancements in breed-
ing programmes and production objectives. Selecting high-quality sires and semen is
crucial for ART success in animal industries, as semen from one male is often used to
inseminate multiple females. ARTs also play a crucial role in helping to overcome human
infertility. Notably, male-factor infertility has been identified to be partially or completely
responsible for half of all infertility cases [1], highlighting the importance of understanding
the link between semen quality and successful pregnancy outcomes following ARTs.

Semen quality is the usual means by which the potential fertility of a male is assessed.
The evaluation of semen quality, whether post-collection or post-thaw before insemination,
routinely involves assessing parameters such as sample volume, concentration, motil-
ity, and morphology [2,3]. Continued research efforts have attempted to standardise the
assessment of these semen factors, leading to the development of more objective anal-
ysis techniques [2] such as the use of a computer-assisted sperm analyser (CASA) for
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sperm motility and kinematics [4] and the introduction of new technologies allowing the
exploration of sperm DNA integrity.

The integrity of a sperm genome is a fundamental factor in the development of healthy
offspring and can be an effective diagnostic tool for sperm reproductive potential [5].
Driven by histone substitution by protamine, genome formation occurs in the sperm
nucleus during testicular development and epididymal maturation. This process causes
chromatin remodelling, forming DNA into toroidal structures [6]. Intact DNA is defined as
‘the complete absence of nicks and breaks, either single or double-stranded, or any chemical
modifications in its structure’ [7]. Sperm DNA fragmentation (SDF) is the accumulation
of single- (SSBs) or double-stranded breaks (DSBs), measured by the DNA Fragmentation
Index (DFI). DFI is calculated by the number of single-stranded DNA (ss-DNA) in a sample
divided by the total number of spermatozoa with intact DNA expressed as a percentage [5].

While the impact of other semen factors on fertility potential has been investigated
across various species [8–10], conclusive and uniform findings regarding the influence of
DNA integrity remain elusive. DNA damage to the sperm cell can be measured using
various assays, which has likely contributed to the reporting of diverse outcomes on
its impact on fertility, posing challenges in comparing trends across and within species.
Common assays used to estimate sperm DNA damage across species include but are not
limited to Sperm Chromatin Structure Assay (SCSA), Sperm Chromatin Dispersion test
(SCD), Transferase dUTP Nick End Labelling (TUNEL) and single-cell gel electrophoresis
(COMET). While certain studies have highlighted a potential connection between sperm
DNA fragmentation and fertility in bulls [11,12], stallions [13], humans [14], boars [15],
and rams [16,17], conflicting results have also been reported on the same species [18–20].
Collating results between assays and particular species could help establish whether there
are any species-specific or sperm-type-specific trends related to particular assay use. It
also emphasises a notable gap where the analysis of DNA integrity could enhance our
understanding of in vitro semen quality and fertility in livestock species.

This review aims to cover commonly used methods of sperm DNA integrity assess-
ment and their implications for ART outcomes across both livestock species and humans.
Through this exploration, we aim to comprehensively analyse DNA integrity as a semen
quality parameter, examining its potential as a biomarker for male infertility and its ability
to enhance predictive accuracy for ART outcomes in both production animals and humans.

2. DNA Maturation and the Development of Spermatozoa

The process of sperm development, DNA compaction and maturation is a complex
and biologically distinct three-step process: mitosis, meiosis and spermiogenesis. The
following section will outline the major processes in this developmental journey and
how interruptions or mutations can occur. The potential sources of DNA damage will be
discussed, and how this influences the ability of spermatozoa to achieve fertilisation under
both natural and artificial conditions.

2.1. Testicular Development

The physiological development of spermatozoa begins in foetal life, with primordial
germ cells forming stem-cell spermatogonia within the testis [21]. Once an animal reaches
puberty, spermatogenesis commences, involving mitotic proliferation and meiotic division
of spermatogonia, which halves the DNA content, creating haploid spermatids. Chromatin
undergoes alterations throughout meiosis and spermiogenesis, where spermatids elongate
to form mature sperm with tightly compacted chromatin (Figure 1). Spermatid transforma-
tion can be divided into four phases: the Golgi, cap, acrosomal and maturation phases [22].
During these phases, the spermatid undergoes significant structural changes, including the
formation of the acrosomal vesicle in the Golgi phase and the acrosomal cap during the cap
and acrosomal phase [22]. During both the acrosomal and maturation phases, extensive
chromatin remodelling occurs to shape the nucleus into a flattened structure.
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Figure 1. An overview of sperm development and chromatin dynamics during histone–protamine
exchange. (A) Spermatocytes undergo mitotic division to form haploid cells, which then undergo
meiosis to form spermatids. Ejaculated sperm can be collected for in vitro processing or be deposited
into the female reproductive tract, where they undergo the capacitation and acrosome reaction [21],
enabling penetration of the oocyte zone pellucida via the acrosome. (B) As chromatin compaction
progresses during testicular development and epididymal maturation, the nucleosomal architecture
shifts to a toroidal structure facilitated by sperm nuclear basic proteins. During spermatid elongation,
transitional proteins are expressed, leading to histone replacement by protamine proteins. This
results in tightly packaged toroids of DNA attached to the sperm nuclear MAR stacked side by
side with a small number of retained histones. Following fertilisation, sperm-specific protamines
are replaced with oocyte-supplied histones. Histone-bound chromatin and MARs from the sperm
are retained in the newly formed pronucleus, altering chromatin accessibility. The yellow boxes
denote potential causes of DNA damage or embryo development disruptions throughout these
processes. Figure created with BioRender.com. This protamine-bound chromatin structure is a model
of the most efficient form toroids could condense to, based on a figure published by Ward, 2009 [23].
Abbreviations: DNA, deoxynucleic acid; MAR, matrix attachment region.



Biology 2024, 13, 539 4 of 22

The chromatin remodelling process from histone to protamine, known as protamina-
tion, shown in Figure 1, is one of the more poorly understood processes of spermiogenesis.
Chromatin, the basic unit of which is the nucleosome, comprises 146 base pairs of DNA
wrapped around a core histone octamer [24]. Chromatin compaction is initiated by so-
matic histones in developing sperm being replaced by sperm nuclear basic proteins. These
proteins include testis-expressed histone subunits, transitional nuclear proteins (TPs) and
protamine proteins [6]. It was previously understood that protamination occurred in a
step-wise fashion [25], but current research indicates that histones and transitional nuclear
proteins co-occur, driving the recruitment and processing of protamines [26].

Presumed to regulate the compaction process, TPs are only known to be involved
in certain species, including humans, rodents, boars and rams [27–29]. The major TPs
include TP1, which is highly expressed, and TP2, which is poorly conserved. Beyond being
a mediator protein between histones and protamines, their importance is not conclusively
known. A study using mutant mice without TP1 revealed successful sperm production
with limited abnormalities, suggesting the potential redundancy of TPs in the development
process [30]. However, double-knockout mice were completely infertile, indicating the
critical role of TPs in sperm chromatin composition and development [31]. Regardless, it is
understood that protamines replace TPs during spermatid elongation [6,26].

Protamines are small basic proteins exclusively found in mature spermatozoa [32].
There are two forms of protamines: Protamine 1 (P1) is expressed in its mature form in all
mammals, whereas Protamine 2 (P2), which matures once bound to DNA, is expressed
by some mammalian species, including man, mice and stallions [32]. The correct P1:P2
ratio within species is crucial for normal sperm development, as deviations have been
linked to increased DNA fragmentation in mice and humans [33–35]. Although protamines
ultimately displace the majority of histones during spermiogenesis, there is still 2 to 15%
of mammalian chromatin, depending on the species and experiment [36–38], bound to
histones after compaction that is associated and bound to specific genes at gene protomer
regions on the nuclear matrix [39] (Figure 1).

Protamines are characterised by their arginine-rich DNA-anchoring domains and
cysteine-rich sequences [32]. The anchoring domains assist in binding protamine to the
DNA backbone, while the cysteine-rich sequences facilitate the formation of multiple
di-sulphide bonds and zinc bridges between protamines, ultimately bending the DNA
into a toroidal structure [25,40]. Connecting each toroid structure are nuclear-sensitive
segments of chromatin called toroid linkers, which are also the site of attachment of DNA
to the nuclear matrix or matrix attachment regions (MARs) [41]. The hydrodynamic shape
visualised in Figure 1 offers the greatest protection to the paternal DNA during transit to
the egg, as studies have found that protamine–DNA compaction provides protection from
radiation damage [42,43]. The nuclear matrix is considered a checkpoint for DNA integrity,
as embryo development cannot occur without MAR organisation and an intact matrix [44].

Ultrastructural changes continue in the maturation stage of spermatid transformation
as the fibrous sheath that covers the axoneme develops, the mitochondria become tightly
packed along the mid-piece, and excess cytoplasm is shed [45]. The elongated spermatids
are then ready to be released into the lumen of the tubules and move along the rete testis as
spermatozoa. In most mammals, the total duration of spermatogenesis lasts 40 to 54 days in
the testis [46]. In humans, the spermatogenic cycle lasts more than 70 days and differs from
other common mammals by the low number of sperm produced per gram of testis [47].

Susceptibility of Chromatin to Damage during Testicular Development

Although several mechanisms highlighted in Figure 1 are known to cause DNA
damage or disrupt sperm maturation during spermiogenesis, the exact source of DNA
damage is not yet well understood. As previously mentioned, a correct protamine ratio
and intact nuclear matrix are essential for normal sperm development. Any abnormalities
in chromatin compaction may manifest in irregularities in the acrosome shape [22]. Sperm
head abnormalities are one of the most common morphological defects linked to fertility
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across species, as the integrity of the acrosome and sperm head must be maintained for
the spermatozoa to bind to the oocyte’s zona pellucida for fertilisation [48]. In addition,
there are other points throughout sperm development and in vitro processing where DNA
is highly susceptible to damage.

The formation of disulphide bridges between protamines is aided by reactive oxygen
species (ROS), ensuring chromatin stability and DNA protection [49,50]. ROS, including
all free radicals with an oxygen atom, are generated endogenously by sperm mostly from
electron leakage from the mitochondria or enzymes in their plasma membrane. They
play pivotal roles in mediating physiological sperm functions such as maturation, motility,
capacitation and sperm–oocyte fusion [51–53]. However, disruption in spermiogenesis,
increasing the number of immature spermatozoa with distorted morphology or cytoplasmic
retention, can elevate ROS levels. Excessive ROS can lead to lipid peroxidation of the
sperm plasma membrane, compromising sperm functions such as DNA integrity [54].
This oxidative stress-induced DNA damage accelerates apoptosis, ultimately reducing
sperm counts. Higher levels of apoptosis, correlated with ROS levels, have been observed
in mature spermatozoa from infertile patients compared to normal sperm donors [55].
Additionally, the phenomenon of ‘abortive apoptosis’ occurs when spermatozoa with
apoptotic markers, such as abnormal morphology or nuclear DNA damage, fail to be
eliminated, thus increasing the level of damaged sperm [56].

Chromatin remodelling also includes a sensitive step where the enzyme, topoiso-
merase II, causes small breaks in the DNA during spermiogenesis, enabling the compact
genetic structure within mature sperm to be formed [57]. These breaks must be repaired
before the end of the protamination process to avoid the presence of DNA damage in the
ejaculate [58]. If this enzyme and process fails, this leads to increased histone retention
in mature sperm [59], inadequate protamination and poor chromatin condensation [60].
Consequently, the less compact chromatin structure results in reduced DNA protection,
making it more susceptible to damage from intrinsic or extrinsic ROS, particularly during
transit through the epididymis [14,61]. Following ejaculation, high ROS levels in the female
reproductive tract can also cause DNA damage. If collected artificially for use in ARTs,
chromatin damage can also occur throughout in vitro processing. Both scenarios will be
discussed further in the following section.

2.2. Epididymal Maturation and Fertilisation within the Female Reproductive Tract

The mammalian epididymis exhibits a consistent structural pattern across mammalian
species, with subtle distinctions in its sections and sperm transit times. As the spermatozoon
leaves the testis, its motility and ability to fertilise will begin to develop as it transits the
epididymis tubule [62].

The epididymis is responsible for supplying an optimal environment for the functional
maturation of spermatozoa and their storage until ejaculation [62]. Traits like motility and
oocyte recognition begin to develop in the caput epididymis and advance, through the
corpus before reaching their peak efficiency in the distal caudal segment. As the sperm
cells transit the epididymis, the formation of disulphide cross-links increases, further
compacting the chromatin into a toroid shape [63,64]. The toroidal configuration optimises
compaction, providing greater DNA protection from mechanical disruption than somatic
cells [45]. Once fully matured, spermatozoa reside in the cauda until ejaculation, where
they are expelled through the vas deferens into the urethra as semen for deposition in the
female or collected for in vitro processing.

Once spermatozoa enter the female reproductive tract, sperm capacitation is initiated
by low levels of ROS [65]. This process alters the sperm cellular membrane to ensure
penetration of the oocyte and binding to the zona pellucida can occur. However, as
previously noted, this process can lead to DNA damage if there are high levels of ROS
present [14] (Figure 1). Shortly after fertilisation, sperm-specific protamines are replaced
by oocyte-supplied histones, while the original histones bound to chromatin are retained
shown in Figure 1 [66]. The primary role of protamines is fertilisation, not embryonic
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development, as evidenced by their histone replacement 2–4 h after fertilisation [67,68].
Further evidence is shown in a study where round spermatids lacking protamines injected
into mouse oocytes demonstrated normal foetal development [69], indicating protamines
are not necessary for embryogenesis but play a protective role in ensuring fertilisation.
The transfer of a histone-based chromatin structural organisation from sperm to newly
fertilised oocytes is crucial for successful embryogenesis [70,71].

The collection and processing of semen for ARTs, such as during freezing and thaw-
ing, can have negative consequences on the quality of spermatozoa post-thaw. In vitro
processing can increase morphological abnormalities, reducing DNA integrity, viability
and fertility outcomes [72–74], arising from temperature shock, osmotic stress and ice crys-
tal formation [74–76]. Having a thorough understanding of the consequences of in vitro
processing on sperm DNA fragmentation or integrity is critical should it be considered as a
viable tool to predict sperm fertility following ARTs.

3. Current Measures of DNA Integrity Used across Species

Across several decades, various methodologies have been employed to assess the
DNA integrity of spermatozoa, encompassing a diverse array of assays summarised in
Table 1. The earliest methods of assessing sperm DNA integrity date back to the 1980s, with
Evenson and Jost developing the Sperm Chromatin Structure Assay (SCSA) [77]. Soon after,
the COMET assay, also known as single-cell gel electrophoresis, was introduced [78,79]
to measure the extent of DNA damage in sperm cells. The 8-Hydroxyguanine (8-oxoG)
assay was introduced soon after this as a way to measure oxidative DNA damage in
various biological fluids [80]. Since then, various methods have been developed to assess
sperm DNA integrity, summarised in Table 1, including TUNEL [81], Chromomycin A3
test (CMA3) [60], toluidine blue (TB) [82] and HALO (Halo Assay for Low-level DNA
Fragmentation) [83,84] or SCD [85]. A summary of findings from studies using these
various DNA integrity assays to determine the impact of DNA fragmentation on fertility is
presented in Table 2. The following section defines each assay and delves into their current
use in research applications, critically evaluating their potential to be integrated into the
semen assessment toolbox by assessing the influence of sperm DNA integrity on fertility
across different species.

Table 1. Overview of DNA integrity assessment assays in spermatozoa. Abbreviations: SCSA, Sperm
Chromatin Structure Assay; TUNEL, Transferase dUTP Nick End Labelling; SCD, Sperm Chromatin
Dispersion; COMET, single-cell gel electrophoresis; TB, toluidine blue; CMA3, chromomycin A3;
DNA, deoxynucleic acid; ss-DNA, single-stranded DNA; ds-DNA, double-stranded DNA; SSB,
single-stranded break; DSB, double-stranded break.

Assay Predominant
Species Equipment Technique Advantages Limitations

SCSA
Human, bull,

ram, boar,
and stallion

Flow cytometry
Measures susceptibility of

sperm nuclear DNA to
acid-induced denaturation.

Efficient, quantitative
assessment.

Has shown consistency
in results.

Expensive equipment
(flow cytometry) and

skilled interpretation and
training needed.

TUNEL Human, bull,
stallion

Flow cytometry
or microscopy

Labels free 3′-OH termini on
ss-DNA or ds-DNA to detect

DNA strand breaks
and apoptosis.

High predictive value.
Direct, easy to use

and efficient.

Expensive equipment if
flow cytometry used.

Skilled equipment
training needed.

SCD Human, ram,
bull Microscopy

Sperm subject to protein
depletion treatment and assay

relies on response of
fragmented or unfragmented

sperm DNA by lysis.

Simultaneously preserves
sperm morphology.
Simple and efficient.

No expensive
equipment cost.

Observer subjectivity
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Table 1. Cont.

Assay Predominant
Species Equipment Technique Advantages Limitations

COMET Human, bull Microscopy

Assesses level of SSB or DSB
in a cell following agarose cell

suspension, cell lysis, DNA
denaturation, electrophoresis

and microscopy.

Can be quantified to
determine cells’ degree of

DNA fragmentation.
Can be used on a smaller

population of cells.

Time-consuming.
High level of training

required to use specific
computer programmes.
No strong conclusions

regarding fertility.

TB Human, bull Microscopy

Metachromatic dye binds to
damaged dense chromatin
and phosphate groups of

DNA strands.

Simple and inexpensive.
Highly predictive of

human fertility.

Labour intensive.
Can only access a limited

number of sperm cells.
Observer subjectivity.

CMA3 Human, bull Flow cytometry
or microscopy

CMA3 compete for protamine
binding sites to identify

endogenous nicks in
decondensed abnormal

sperm.

Directly related to degree of
protamination.

Can identify abnormalities
in histone–protamine

displacement.

Observer subjectivity
with microscopy.

Expensive equipment if
flow cytometry used.

Table 2. The predictive power of DNA integrity assessment methods and their link to fertility across
species. Abbreviations: SCSA, Sperm Chromatin Structure Assay; AO, acridine orange; SCD, Sperm
Chromatin Dispersion test; COMET, single-cell gel electrophoresis/comet assay; TUNEL, terminal
deoxynucleotidyl Transferase dUTP Nick End Labelling; CMA3, chromomycin A3; TB, toluidine blue;
AB, Aniline Blue; SDF, sperm DNA fragmentation; DFI, DNA Fragmentation Index; HDS, high DNA
stainability; TH, threshold; SE, sensitivity; SP, specificity; AUCROC, area under receiver operating
characteristic curve; OR, odds ratio; 95% CI, 95% confidence interval; PPV, positive predictive value;
NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; NRR,
non-return rate; CP, clinical pregnancy; LB, live birth; CR, conception rate; FR, fertilisation rate; SU,
swim-up; OO, own oocyte; DO, donated oocyte; ART, assisted reproductive technology; IVP, in vitro
embryo production; IVF, in vitro fertilisation; ICSI, intracytoplasmic sperm injection; IUI, intrauterine
insemination; AI, artificial insemination; AIH, artificial insemination by husband; ET, embryo transfer;
PD, protamine deficiency; HF, high fertility; LF, low fertility; ESBV, estimated bull service value; EGV,
estimated genetic value; PR, pregnancy rate; DNA, deoxynucleic acid; NDS, no significant difference;
NS, not significant; SD, significant difference; COMP αt, cells outside the main population; H-DNA,
head DNA density; T-DNA, tail DNA % intensity; TM, tail moment (% T-DNA × Tail length); OTM,
olive tail moment.

Species ART Method Sperm DNA
Integrity Measure Correlation/Outcome Reference

SCA

Human
(n = 165) ICSI DFI

DFI lower when pregnancy was achieved (14.86%) than when
no embryonic heartbeat detected (17.37%); p = 0.031
Low DFI in spermatozoa corresponded with faster embryo
development to reach the blastocyst stage
DFI positively correlated with a delay in 8 out of 13 embryonic
development periods

[86]

Human
(n = 420) ICSI (OO or DO)

SDF before and after
SU of fresh and

frozen–thawed sperm

SDF increase of 10%; probability of negative pregnancy outcome
increased by 1.31
SDF affects pregnancy outcome (OR 0.973, 95% CI 0.948–0.999,
R2 0.069; p = 0.037)

[87]

Human
(n = 377) ICSI DFI >30%

(mean 39.25)

DFI > 30% decreased number of 8-cell embryos on day 3 (3.97)
Number of blastocysts formed on day 5 (1.6), CP (23.13%) and
LB (13.43%) from <30% DFI (5.96, 2.44, 35.83%, 28.75%; n = 237);
(p = 0.001, p = 0.001, p = 0.05, p = 0.005)
Miscarriage rate (9.7%) increased from <30% DFI (7.08%);
p = 0.005

[88]
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Table 2. Cont.

Species ART Method Sperm DNA
Integrity Measure Correlation/Outcome Reference

Human
(n = 135) ICSI SDF > 22.3%

SDF > 22.3% FR (55.1%) lower than sperm > 22.3% SDF (74.9%);
p < 0.001.
SDF negatively correlates with FR (r = −0.433; p < 0.001).

[89]

Human
(n = 94) ICSI

Low DFI (<15%);
(n = 50)

Mod DFI (15–30%);
(n = 31)

High DFI (>30%);
(n = 13)

High-DFI group was unable to achieve pregnancy
following ICSI. [90]

Human
(n = 85) IVF/ICSI SDF

SDF negatively correlated with FR (r = −0.241; p = 0.045) and
implantation rate (r = −0.25; p = 0.042) of samples assessed
post-capacitation
Asymmetrical nuclei more frequent with increased SDF in
capacitated sperm; p < 0.05
Higher SDF lowered ability to develop expanded blastocyts on
d6; p < 0.05

[91]

Human
(n = 867)

IVF
(n = 379)

Low DFI
(<30%); (n = 343)

High DFI
(>30%); (n = 36)

FR higher in High-DFI group (86.9%) than Low DFI (78.4%);
p < 0.05
CP lower in High-DFI group (25%) than Low DFI (48.6%)
p < 0.05

[18]

Rasa
Aragonesa
ram (n = 8)

Field fertility odds
ratio 1.4–1.7 (HF;
n = 4) 0.6–0.9 (LF;

n = 4)

SDF SDF following 6 and 24 h incubation at 37 ◦C higher in LF
(20.27%, 31.24%) than HF (14.42%, 22.32%), p < 0.05, p < 0.01 [92]

Holstein bull
(n = 201)

AI
(≈533/bull) SDF

SDF following 0 h incubation negatively correlates with ESBV
and EGV (r = −0.45, r = −0.36; p < 0.0001)
SDF following 6 h incubation negatively correlates with ESBV
and EGV (r = −0.49, r = −0.38; p < 0.0001)

[93]

Stallion
(n = 11)
Moderate
fertility = PR
<50% (n = 8)
Good
fertility = PR
>50% (n = 3)

Uterine AI
(catheter)

SDF in semen
cool-stored in spring

vs. summer

Negative correlation between SDF and PR (r = −0.619; p < 0.001)
Moderate-fertility group has higher SDF at 0 (7.9) and 6 h (15.4)
cooled storage compared to good-fertility group (3.83%, 9.58%);
p < 0.05
SDF rate higher in sperm cool-stored in summer than in spring
and PR lower in summer than spring; p < 0.05

[94]

TUNEL

Human
(n = 105) ICSI DFI > 20%

(% TUNEL positive)

DFI > 20% decreased the number of good-quality embryos
(6.63), implantation rate (4.9%), and number of pregnancies (3)
from <20% DFI (11, 15.79%, 9); p = 0.018, p = 0.002, p = 0.046

[95]

Human
(n = 36) ICSI SDF

SDF negatively correlated with mean total embryo score
(r = −0.64, p < 0.001) and mean transferred embryo score
(r = −0.63, p < 0.001)
SDF TH 17.6% is predictive of pregnancy (p < 0.021)

[96]

Human
(n = 303) IVF/ICSI SDF

SDF higher in ICSI (6.8%) than IVF (1.9%) group (p < 0.05)
SDF negatively correlated with IVF and ICSI FR (r = −0.357;
p < 0.001, r = −0.222; p = 0.04)
Good embryo rate (p < 0.05)
SDF <4% (46.4%) higher than 10–15% SDF (31.6%) in IVF group
SDF <4% (45.6%) higher than 10–15% SDF (33.0%) in all samples

[97]

Human
(n = 45) IVF SDF (%TUNEL

positive)
SDF negatively correlated with FR; p < 0.05
>55% SDF resulted in lower FR than <35% SDF; p < 0.05 [98]

Human
(n = 68) ICSI SDF (%TUNEL

positive) SDF higher in non-pregnant group than pregnant group [98]

Holstein bulls
(n = 5) AI SDF (% TUNEL

positive)
SDF higher in LF (below-average fertility) bulls (20–25%) than
average or HF (above-average fertility) bulls (<15%); p < 0.05 [99]

Norwegian
red bulls
(n = 30)

AI
SDF (% TUNEL

positive) 4.8–9.4%
9.4–21.2%

2.2–4.8% SDF 10% significantly higher odds of AI success
(p = 0.006) [100]
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Table 2. Cont.

Species ART Method Sperm DNA
Integrity Measure Correlation/Outcome Reference

SCSA

Human
(n = 2262)

ART (AIH-IUI
n = 1185, IVF
n = 1221, ICSI

n = 216)

High DFI (≥30%)
Med DFI (15–30%)
Low DFI (≤15%)

AIH-IUI: Early abortion rate increased in High-DFI (27.3%) and
Med-DFI (14.6%) groups compared to Low DFI (4.9%); p < 0.05 [101]

Human
(n = 1316) IVF DFI >11.3%

DFI higher in non-pregnant (17%) than pregnant group (14.9%);
p = 0.001
DFI is a predictor of pregnancy outcome (p = 0.023)
DFI TH > 11.3% is predictive of pregnancy outcome (AUCROC

0.574, 95% CI 0.541–0.607, SE 56.1%, SP 60%, PPV 77.9%,
NPV 35.1%)

[102]

Human
(n = 266) ICSI DFI >30.3%

DFI higher in non-pregnant (31.5%) than pregnant group
(26.3%); p = 0.01
DFI is a predictor of pregnancy outcome (p = 0.004)
DFI TH > 30.3% is predictive of pregnancy outcome (AUCROC

0.567, 95% CI 0.487–0.647, SE 50.6%, SP 68.8%, PPV 79.3%,
NPV 37.0%)

[102]

Human
(n = 96)

ICSI
(n = 155) 19% DFI TH

DFI TH ≥ 18–19% predicts the outcome of ICSI (p < 0.005)
DFI negatively correlates with continuing pregnancies
(r = −0.184, p = 0.022), and positively correlates with
non-pregnancy (r = 0.197, p = 0.014)
Continuing pregnancy rate and implantation rate lower in
≥19% DFI group (14.9%, 12.1%) than <19% DFI (34.6%, 27.2%);
p = 0.005, 0.001
Non-pregnancy rate significantly higher in ≥19% DFI group
(75.7%) than <19% DFI (55.6%) p = 0.008

[103]

Ram
(n = 15) Vaginal AI

Mean DFI and
heterogeneity (SD
DFI) of SDF in the

total sperm
population

Mean DFI negatively associated with 25 d NRR (OR 0.98, 95%
CI 0.97–1, p = 0.039)
SD DFI negatively associated with 25 d NRR (OR 0.98, 95% CI
0.97–0.99, p = 0.001

[16]

Finnish
Ayrshire bull
(n = 43) >55%
60 d NRR
(F; n = 21)
<55% 60 d
NRR
(SF; n = 22)

AI (n ≈ 5964/bull)
DFI

SD-DFI
HDS

HDS higher in F (0.61%) than SF bulls (0.48%); p < 0.05
HDS positively correlated with calving rate (r = 0.31; p < 0.05) [12]

Norwegian
red bull
(HF; n = 19)
(LF; n = 18)

AI DFI
HDS

HF bulls had lower DFI and HDS (1.84%, 2.93%) than LF bulls
(3.5%, 4.31%) p < 0.01
DFI and HDS negatively correlate with 56 d NRR56 (r = −0.57,
p = 0.0003, r = −0.37, p = 0.026)
DFI significantly predicts 56 d NRR (p < 0.01)

[104]

Norwegian
red bulls
(n = 30)

AI DFI

7.5–21.6% DFI reduced odds of AI success from average (6%;
p = 0.011)
1.6–3.8% DFI increased odds of AI success from average (7%;
p = 0.010)

[100]

Swedish red
bull
(n = 14)
Holstein bull
(n = 6)

AI

DFI 3.31% TH
Below-average 56 d
NRR (BAB, n = 5)
Average 56 d NRR
(AB, n = 9)
Above-average 56 d
NRR (AAB, n = 6)

DFI decreased in AAB (2.88%) compared to BAB and AB (6.23%,
4.65%); p < 0.05
DFI negatively correlated with adjusted 56 d NRR (r = −0.61;
p = 0.01)
DFI can differentiate between BAB and AAB (R2 = 0.56; p = 0.02)
DFI TH 3.31% accurately predicts 56 d NRR (SE 66.7%, SP 100%,
AUCROC 0.8)

[11]

Holstein bulls
(n = 20) AI DFI

(COMP αt)
DFI negatively correlated to NRR (r = −0.60 p < 0.01)
DFI lower in mature bulls than in young bulls (p < 0.01) [105]

Holstein bulls
(n = 19)

AI
(n = 192) SDF SDF negatively correlated with 56 d NRR (r = −0.287, r2 = 0.082;

p < 0.05)
[106]
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Table 2. Cont.

Species ART Method Sperm DNA
Integrity Measure Correlation/Outcome Reference

Bulls:
Holstein
(n = 156)
Jersey
(n = 39)

AI
(n = 75,610)

DFI
SD-DFI
HDS

Sperm without DFI (97.5%) predicts 56 d NRR (p < 0.0001)
Sperm with moderate DFI (2.4%) predicts 56 d NRR (p < 0.0001)
Sperm with High DFI (0.2%) predicts 56 d NRR (p < 0.0003)
SD-DFI (33.3%) predicts 56 d NRR (p < 0.0001)
HDS (2.8%) predicts 56 d NRR (p < 0.0004)

[107]

Boar
(n = 18) AI

Mean DFI
SD DFI of SDF in the
total sperm
population

DFI negatively correlated with farrowing rate (r = −0.55,
p < 0.01) and ANB (r = −0.54, p < 0.01)
SD DFI negatively correlated with farrowing rate (r = −0.67,
p < 0.002) and ANB (r = −0.54, p < 0.02)
DFI TH 6% is predictive of farrowing rate and ANB (OR 1.5,
95% CI 1.21–1.94, p = 0.0003, SE 83%)
SD DFI TH 40 is predictive of farrowing rate and ANB (OR 2.5,
95% CI 1.87–3.32, p = 0.001, SE 92%)

[15]

Boar
(n = 160) AI DFI > 3%

DFI > 2.1%

DFI > 3% (0 h storage) reduced ANB/litter (13.9) from DFI < 3%
(14.87–14.94); p < 0.01
For Landrace and Danish Large White boars, DFI > 2.1% after 24
h 18 ◦C storage had lower litter size (14.4, 14.2) than DFI < 2.1%
(15.1, 15.1); p < 0.01

[108]

Stallion
(n = 41) AI

DFI
SD DFI
Mean DFI

DFI negatively correlated with PR (r = −0.63, p < 0.05) [109]

COMET

Human
(n = 339)

IVF (n = 203)
ICSI (n = 136)

>50% SDF (Comet
Score) TH

SDF higher in non-pregnant group than LB or miscarriage
groups (p < 0.05) following IVF
SDF TH > 50% reduced pregnancy (16.2, p = 0.005) and LB rates
(13.1%, p = 0.007) following IVF

[110]

Bulls
(n = 45)

IVP
(-ET)

Mean-DNA
Mean H-DNA
T-DNA

T-DNA higher in group 4 (8.53%) than group 3 (4.31%); p < 0.05
Mean-DNA and Mean H-DNA negatively correlated with
blastocyst rate (r = −0.375, r = 0.389; p = 0.02, p = 0.016)

[111]

Italian
Mediter-
ranean
Buffalo bulls
(n = 3)

AI
(n = 528)

% H-DNA
% T-DNA
TM
OTM

% H-DNA TH ≥ 86% (and its relative % T-DNA < 14%) predicts
successful d30/45 pregnancy (AUCROC 0.56, SE 81%, SP 26%;
p < 0.05)
Tail area TH ≤ 58 µm2 predicts successful d30/45 pregnancy
(AUCROC 0.56, SE 80%, SP 26%; p < 0.05)

[112]

Nili–Ravi
Water Buffalo
bull
(n = 5)

AI
(n = 514)

Comet length, %
H-DNA, %T-DNA,
tail length, TM, OTM

Tail length negatively correlated with fertility rate (r = −0.7;
p = 0.04) [113]

Buffalo bulls
(n = 6)
(HF; n = 3)
(LF; n = 3)

IVP
(-ET)

SDF (% of cells
comet tail+)

SDF higher in LF group (18.72%) than HF group (8.94%;
p < 0.05). [114]

TB

Humans
(n = 1386)

Infertile and
normospermic SDF% Mean TB staining was higher in infertile group than

normospermic (p = 0.005) [115]

Human
(n = 142)

Infertile and
fertile men

%TB dark cells
%TB light cells

TB dark cells and light cells had 92% and 90% specificity,
respectively, for predicting infertility
Both poor predictors of fertility (42 and 32%
sensitivity, respectively)

[116]

Bull
(n = 8)

Fertile and
sub-fertile (subjects
to scrotal insulation)

Chromatin alteration
types
(Base, Basal half,
Central axis,
Dispersed and Whole)

Greater (p < 0.01) chromatin decondensation and heterogeneity
were recorded in sub-fertile bulls [117]

CMA3

Human
(n = 139) IVF %CMA3 positivity

%CMA3 positivity has negative correlation with farrowing rate
%CMA3 positivity significant difference between fertilising and
non-fertilising patients.

[118]

Human
(n = 30) ICSI %CMA3 %CMA3 positivity showed significant negative correlation

with FR [119]
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Table 2. Cont.

Species ART Method Sperm DNA
Integrity Measure Correlation/Outcome Reference

Bulls
(n = 12)
(140 bulls
ranked on
embryo
development
rate, chose
bottom 6 and
top 6)

IVP %CMA3

Significant difference in %CMA3 between groups (p = 0.03),
suggesting greater protamine deficiency in the high
fertility group

[120]

3.1. Sperm Chromatin Structure Assay (SCSA)

The flow cytometric SCSA is a diagnostic tool used to measure the susceptibility of
sperm nuclear DNA to acid-induced denaturation in situ, which has been correlated with
the presence of DNA strand breaks [17,121]. This is achieved by exposing the spermato-
zoa to an acid–detergent solution, prompting DNA denaturation at the sites of SSBs or
DSBs [122]. This assessment can be quantified using flow cytometry, where the semen
samples contain a percentage of mature cell DFI that is sorted into either detectable, sperm
with increased chromatin damage, or non-detectable groups [123]. Acridine orange (AO) is
utilised for its metachromatic properties, where red fluorescence indicates single-stranded,
denatured DNA, while green indicates double-stranded, intact DNA using SCSA software
(SCSA-Soft2.0; SCSA Diagnostics, Inc., Brookings, SD, USA) [17,123,124]. The ratio of total
denaturation is calculated for each spermatozoon in a sample, and the results are expressed
as the percentage SDF of cells with high denaturation ratio values [12].

SCSA is well regarded for its efficiency in determining results using flow cytometry
as described in Table 1. SCSA results are independent descriptors of semen quality that
complement traditional assessments of sperm quality, as parameters are weakly to moder-
ately correlated to concentration, motility and morphology [125]. However, the parameters
tested within the SCSA correlate with DNA strand breaks [126] and fertility in vivo [127].
The SCSA can determine the importance of DNA structure in outcomes of ARTs such as AI.

SCSA has been tested and contrasted in different species, showing high repeatability
and sensitivity (Table 2). Flow cytometry-based SCSA has been identified as the most
objective and statically robust measure in human fertility clinics [122]. A large human
study (n = 2262) described in Table 2 found that the early abortion rate increased in the High-
DFI (27.3%) and Medium-DFI (14.6%) groups compared to the Low-DFI (4.9%) group, but
there was no effect on pregnancy [101]. In another study with 1316 human patients, %DFI
was found to be a predictor of pregnancy outcome, with %DFI higher in the non-pregnant
group than the pregnant group [102]. As shown in Table 2, SCSA is currently the most
commonly used DNA assay in research, especially for animals like bulls. Multiple studies
on Norwegian [104], Swedish [11,128], and Holstein bulls [105–107,129] have found %DFI
to be negatively correlated with non-return rate (NRR) at 56 days. %DFI was also found to
negatively affect NRR after 25 days in a study on 15 rams [16]. Some studies identified no
significant predictive ability of DNA integrity, measured as %DFI or SDF, for pregnancy
or in vitro fertilisation (IVF) outcomes in humans [103,130], boars [20] and stallions [109]
(Table 2). As SCSA requires specialised equipment, flow cytometry, and technical expertise
to understand clinical significance, there can be difficulties with interpreting the results
accurately (Table 1). However, the consistent negative correlation reported in the earlier
mentioned studies across several species indicates the soundness of SCSA as an appropriate
assay to measure DNA integrity to give insight into fertility outcomes when using ARTs.

3.2. Single-Cell Gel Electrophoresis (COMET)

The COMET assay determines DNA fragmentation by assessing the level of SSBs
and/or DSBs in a cell following steps of agarose cell suspension, cell lysis, DNA denatu-
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ration (alkaline comet assay only), electrophoresis and microscopy. DNA loops migrate
from a damaged cell to the anode [131], forming a COMET tail of fragmented DNA from
the nucleoid in which the fluorescence intensity is proportional to the degree of DNA
fragmentation [132]. Unlike SCD or TUNEL, COMET can also be quantified to determine
each cell’s true degree of DNA fragmentation. COMET tail DNA percentage intensity
determines the total amount of fragmented DNA compared to all DNA in a single cell
(tail DNA ÷ (tail DNA + head DNA)). COMET tail length is a measure of the size of DNA
fragments, as smaller fragments will migrate further than larger fragments during elec-
trophoresis. COMET tail moment is the product of both tail length and tail DNA percentage
intensity (tail length × tail DNA %), and finally, the olive tail moment is the product of
the percentage of total DNA in the tail and the distance between the centres of the mass of
head and tail regions ((tail mean-head mean) × tail DNA %). A minimum of 50–200 cells
per sample are assessed, and the DNA fragmentation for each sample is presented as an
average tail DNA %, tail length, tail moment and/or olive tail moment.

COMET can be performed under either neutral or alkaline conditions. Neutral COMET
assesses only DSBs as these conditions do not support the unwinding of the DNA double
helix structure. Therefore, all fragments in the COMET tail must have breaks on both
strands of the DNA [133]. As only DSBs can be analysed, neutral COMET is often more
subtle in its determination of SDF. One study found that the neutral COMET assay had no
predictive power of fertility in men, whereas the alkaline COMET assay was the best at
predicting male fertility, followed by other assays like TUNEL and SCSA [134]. Alkaline
COMET is often preferred as all DNA fragmentation can be assessed, and the outcome
is more robust than neutral COMET, allowing for greater differentiation of DNA frag-
mentation between groups [135]. Neutral and alkaline COMET can be used in tandem to
determine the level of all SSBs and DSBs and thus ascertain the proportion of SSBs alone.
However, the accuracy of this has yet to be confirmed.

As sperm cell chromatin is highly compacted, DNA is often harder to access through
traditional somatic cell COMET assays. The alteration of various lysis and denaturation
methods has allowed for more accurate COMET assay results. However, more optimi-
sations may be required to assess the DNA fragmentation across many species (Table 2).
COMET is not widely employed as it is time-consuming to prepare and perform as de-
scribed in Table 1. However, it is highly regarded for its simplicity and visualisation of
DNA breakage [135], and it facilitates the detection of DNA fragmentation in cells that may
be obtained with a smaller number of cells than required from other assays [136].

The COMET assay has provided evidence of DNA integrity’s significant impact on
human pregnancy, with SDF > 50% correlating with reduced pregnancy success following
IVF [110]. However, due to its downfalls, the use of either neutral or alkaline COMET assay
is minimal, and there are no strong conclusions regarding fertility (Table 2). The COMET
assay has been predominantly employed to measure sperm DNA integrity in bulls, where
findings often indicate no significant correlation between SDF and high- and low-fertility
groups [120]. The studies in Table 2 that reported a significant impact of SDF on field
fertility, or comet tail length negatively affecting fertility, had very small sample sizes of
five [113,114] and three bulls [112] (Table 2). The limitations of the COMET assay described
in Table 1 hinder its use in both human and livestock research as a measure of sperm DNA
integrity, as evidenced by the lack of literature employing this assay.

3.3. Transferase dUTP Nick End Labelling (TUNEL)

TUNEL detects DNA strand breaks and apoptosis in cells by labelling free 3′-OH
termini on single- or double-stranded DNA [137]. TUNEL utilises the action of terminal
deoxynucleotidyl transferase, which catalyses the addition of deoxyribonucleotides, specif-
ically deoxyuridine triphosphate (dUTP), to the 3′-OH termini of DNA strands of either
fragment that break off during apoptosis or strand breaks that have formed through other
processes [131]. The degree of fluorescent or chemical labelling attached to the dUTP is
directly proportional to the number of DNA strand breaks within the DNA. The TUNEL
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assay is valued for its high predictive value and potential to distinguish sub-fertile pop-
ulations by identifying elevated sperm DNA fragmentation [137] (Table 1). Because of
this, the TUNEL assay has been utilised in studies across species, as seen in Table 2, which
have found a significant impact of DNA integrity on embryo development and fertilisa-
tion [95,96,98]. Moreover, TUNEL is a direct measure of SSBs and DSBs by incorporating
modified nucleotides directly onto the site of damage [131]. The assay has the capacity
to assess 10,000 cells using flow cytometry [131], facilitating efficiency and ease of use
(Table 1).

In humans, an overarching negative correlation exists between DNA fragmentation
measured by TUNEL and fertilisation and pregnancy rates (Table 2). However, these results
are across various ART methods, including IVF, intrauterine insemination (IUI) and ICSI,
and DNA integrity measures. This may be why we see variation in results, with some
studies in Table 2 using TUNEL. The several livestock studies using TUNEL, as mentioned
in Table 2, have small sample sizes, limiting their robustness and complicating comparisons
with the many human studies using the same assay. While the TUNEL assay is a valuable
diagnostic tool for identifying sperm DNA fragmentation, the lack of standardisation
and validation across laboratories hinders widespread application [131]. Encouraging the
use of TUNEL in the livestock industry or production settings may require additional
research employing this assay to create a concrete understanding of the impact of DNA
fragmentation on livestock fertility.

3.4. Chromomycin A3 (CMA3)

CMA3 is an indirect assay used to evaluate the degree of sperm chromatin protamine
deficiency and is a fluorochrome specific for guanosine cytosine-rich sequences. CMA3
allows for indirect visualisation of protamine-deficient and decondensed sperm DNA
by competing with protamine binding sites and facilitating the identification of endoge-
nous nicks in decondensed abnormal spermatozoa with CMA3-positive nuclei [60,138].
Moreover, this method is directly related to the degree of protamination in mature sperma-
tozoa [139]. Hence, this assay is useful in identifying abnormalities in histone–protamine
displacement, identifiable by the bright yellow staining observed under a fluorescent
microscope [140].

This technique has potential as a good predictor of fertility, whereby the percentage
of staining of CMA3 is negatively associated with the quality of spermatozoa. This was
observed in [139] in men, where samples exhibiting a high threshold of >49–77% CMA3
staining achieved significantly lower fertilisation rates than samples exhibiting low (8–62%)
CMA3 staining. This result was repeated in another study, which found a negative corre-
lation between the percentage of CMA3 and IVF rate and a significant difference in the
mean percentage of CMA3-positive spermatozoa between fertile and infertile groups of
men [118].

Regarding livestock, CMA3 has predominantly been used to stain bull spermatozoa to
assess sperm quality, as shown by the studies presented in Table 2. A significant difference
in the percent of CMA3 was found between bull groups, representing higher protamine
deficiency in the high-fertility group [120]. However, [120] proposed that protamine de-
ficiency in cattle may not significantly result in DNA damage, as there was no difference
between fertility groups when an alkaline COMET test measured DNA fragmentation.
CMA3 is frequently used in conjunction with another DNA integrity assay to determine
fragmentation or assess sperm protamine content [119,120]. Due to this reliance on com-
plementary assays and the uncertainties arising from limited studies in animals, CMA3
may be less suitable for widespread use in industry. Nevertheless, further research across
various livestock species using CMA3 could position it as a useful tool for evaluating male
fertility before ART use, akin to its use in humans.
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3.5. Toluidine Blue (TB)

The TB test indirectly identifies DNA fragmentation in spermatozoa. The TB metachro-
matic dye is a sensitive external agent that incorporates into the damaged dense chromatin
and binds to phosphate groups of DNA strands, resulting in chromatin staining [141].
This assay is well regarded for its simplicity and usefulness in determining sperm DNA
integrity (Table 1). Moreover, it was found that a threshold of 45% is highly predictive of
male infertility [116]. Despite a couple of studies finding higher TB staining in infertile
groups of males, the TB test seems to be less commonly used in human research [115,142].
This may be due to the constraint posed by its ability to assess only a limited number of
sperm and its labour-intensive nature [109].

TB has been used in livestock studies to identify chromatin alterations or nuclear
morphology of spermatozoa, often focusing on the correlation between semen quality
parameters. A study in bulls using TB found that sperm presenting chromatin instability
had a larger sperm head area [143]. The same study used another assay, CMA3, to find that
sperm with abnormal chromatin compaction did not impact early embryonic development.
In a study on 20 bulls, a significant reduction in chromatin maturity was identified in sperm
from low-fertility bulls compared to high-fertility bulls [144]. Another study reported a
similar result, noting lower overall chromatin alterations in sub-fertile bulls compared to
fertile bulls using TB [117], although this result was obtained by a small sample size of only
three bulls (Table 2). Besides these studies on bulls, TB is not frequently employed in other
livestock species. Instead, it is often used in combination to identify sperm morphological
structure [145,146]. Unlike in human research, TB is not a common assay used in livestock
solely to measure DNA fragmentation and its impact on fertility outcomes.

3.6. Sperm Chromatin Dispersion (SCD) Test

The SCD test, or HALO, is a quantitative measure of DNA integrity by assessing
chromatin stability based on induced decondensation [85]. Within this assay, spermatozoa
are subjected to a protein depletion treatment, and the assay relies on the response of
fragmented or unfragmented sperm DNA by lysis [17]. If the sperm DNA molecule
is immensely broken, most of the genome will be denatured, whereas non-fragmented
DNA will remain intact [147]. Following this, sperm are immersed in a lysing solution to
remove protamines, which results in the spreading of DNA loops into the surrounding
microgel [147]. These loops constitute a peripheral halo of DNA chromatin emerging
from a central core or residual nuclear area [147]. Following the treatment, the absence
of significant denaturation of sperm DNA indicates a lack of fragmented DNA, which
is distinguished by the large halos of dispersed DNA representing the sperm %DFI [17].
Sperm nucleoids that have been denatured in the previous solution will appear without a
halo of dispersed chromatin or to a limited extent [17].

SCD also contains a species-specific lysing solution that simultaneously preserves
sperm morphology while facilitating the discrimination of sperm from other cell types
within an ejaculate or biopsy [147]. The Halo-sperm kit (Halotech DNA, Fuencarral-El
Pardo, Madrid, Spain) is widely used for the SCD test as it provides all the necessary
reagents required for the assay and facilitates simplicity of use, repeatability, and con-
sistency in results [147] (Table 1). In humans, the Halo-sperm kit has been employed to
determine the level of DNA fragmentation in semen samples, with numerous studies in
Table 2 showing a negative correlation between %DFI and pregnancy outcomes [86,87].

Due to the simplicity and efficiency of this test, it is extensively used in research
across various animal species (Table 2). Several studies in humans have explored DNA
fragmentation’s impact on embryo development and fertilisation using the SCD assay.
In [148], an SDF rate of >30% resulted in a decreased quality of embryo formation, corre-
sponding to [88] finding a decrease in eight-cell embryos and blastocysts formed with DFI
> 30%. Further human research has shown a high %DFI to cause failed fertilisation and
pregnancy [89–91]. Although these findings seem conclusive, a study found the opposite
effect of high DNA fragmentation causing increased fertilisation rates in humans [18].
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Similar findings have been seen in other species, including rams, with some studies
reporting high SDF in high-fertility groups [92] or no significant impact of SDF on fertility
measurements [19] (Table 2). However, there is an equal level of research reporting con-
tradicting results, with the SCD assay identifying SDF as being higher in the low-fertility
group of rams than in the high-fertility group [92]. In Holstein bulls, a study found a
significant impact of SDF, negatively impacting estimated breeding value and estimated
genetic value [93]. Although the research using SCD in livestock is limited compared to
humans (Table 2), these results impacting breeding and genetic value are important factors
in producers’ income. This may act as an incentive for producers to employ DNA integrity
assessments in investigating male fertility before implementing ART programmes.

3.7. 8-Hydroxyguanine

8-Hydroxyguanine (8-oxoG) is the most common measurement of oxidative DNA
damage. It involves measuring 8-oxoG, mainly produced by ROS-inflicted damage [149],
in digested DNA using high-performance lipid chromatography (HPLC) with electrochem-
ical detection to determine the level of 8-oxoG [150]. 8-oxoG levels in different biological
fluids have been investigated as oxidative stress marker candidates, including urine [150,151],
saliva [152,153] and semen. However, its use as an assay to measure oxidative DNA damage
in sperm is quite limited, with only two studies investigating this to our knowledge [154,155].
One of these studies found 8-oxoG to be linked with human male infertility, with a group
of 91 infertile males having significantly elevated levels of 8-oxoG than the control group
(normozoospermic) of 32 males [154]. This study also found statistically significant cor-
relations between the level of 8-oxoG and seminal parameters, including concentration,
motility and morphology. The other study found a similar finding in bulls, with one bull
classified as infertile due to asthenoteratozoospermia having significantly higher levels of
8-oxoG than a group of fertile bulls [155]. Further research is now needed to expand the
sample size and corroborate its ability to be used as a marker of DNA damage in sperm
and thus a predictor of fertility.

4. Implications for the Livestock Artificial Breeding Industry

Despite the multiple assays discussed, the analysis of DNA integrity remains an
uncommon part of standard semen assessment in animal industries. Although its incor-
poration into human fertility research has yielded a substantial understanding of sample
quality and viability, commercial adoption remains limited. This is primarily due to the
uncertain clinical value or relationship between DNA integrity and successful IVF or ARTs.
While DNA damage is broadly associated with male infertility, its direct impact on fertility
outcomes following ARTs lacks conclusive evidence, with studies listed in Table 2 report-
ing conflicting findings. Additionally, there is an inconclusive understanding amongst
researchers on whether DNA integrity assays offer novel insights beyond existing semen
assessment parameters. Until validated DNA integrity assays offer unique fertility insights,
there will be a preference for current simple and cost-effective tests like sperm motility
and kinematics, morphology and concentration assessment. Many reviewed DNA assays
necessitate expensive equipment like flow cytometry and specialised training for accurate
use and interpretation (Table 1). The subjective nature of microscopy protocols in certain
assays presents challenges in interpretation, resulting in inconsistent findings within the
same assay and species shown in Table 2. The lack of conclusive findings regarding fertility
and DNA integrity from each assay due to these issues underscores the uncertainty about
identifying the most suitable assay and contributes to the hesitance in the commercial in-
dustry to adopt DNA integrity as a semen quality parameter. Incorporating DNA integrity
assessment into routine commercial practice will remain challenging until standardised
protocols and validated assays for specific species’ DNA integrity are established. Ulti-
mately, until the above-mentioned DNA assays can be assessed side by side in the same
study, using identical samples and incorporating large-scale fertility data, it will be difficult
to determine the most accurate assay correlated with field fertility or ART success. Given
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the variability surrounding what each assay measures within DNA and when and how,
assays must be compared reliably within the same studies on the same samples to make an
informed decision for industry.

Despite the uncertainties surrounding DNA integrity assay outcomes, their potential
to offer unique fertility insights remains promising. Studies including [90] using SCD, [118]
using CMA3, [99] using TUNEL, and others in Table 2 have documented a significant
negative impact of high DNA fragmentation levels on fertility outcomes. If substantiated
with larger sample sizes and consistent findings within species and assays, this emerg-
ing trend could have significant implications for both the animal breeding and human
fertility industries. Among the assays, the SCD test through the use of the Halo-sperm
kit appears as the most promising assay for assessing DNA integrity in livestock industry
practices, providing results comparable to the commonly used SCSA without the expensive
equipment and expertise required. The accurate prediction of DNA integrity in semen
can contribute significantly to the quality assurance of samples used in ART programmes.
Advanced semen assessment for the precise prediction of sire fertility before insemination
has the potential to substantially enhance success rates by excluding sires with sub-optimal
fertility results. As ART procedures become more reliable and consistently successful,
the prospect of increased industry adoption leads to improved genetic gain and overall
advancements in reproductive technologies.

5. Conclusions

The escalating prominence of ART use in livestock and human contexts reflects a
response to infertility challenges and a means to enhance reproductive outcomes. Recent
advances in animal research, particularly in the context of AI programmes, highlight the
variability in success outcomes linked to semen quality factors. Human semen assessment,
a precursor to ART utilisation, is evolving from subjective evaluations to incorporate stan-
dardised objective technologies. Despite extensive investigations into the impact of semen
factors on fertility across various livestock species, the influence of DNA fragmentation
remains inconclusive and is yet to be integrated into standard semen analysis of animals.
There is, however, growing evidence that an increase in DNA fragmentation negatively
impacts reproductive outcomes in livestock studies. By improving consistency and stan-
dardisation in the methodology used across studies while also increasing sample sizes, this
trend may strengthen in future studies. Introducing DNA integrity assays into the semen
assessment toolbox for livestock species could increase the accuracy of pre-screening assays,
helping to reduce the use of poor-performing sires or samples and therefore increasing the
success rates of ARTs, enhancing genetic gain and production traits for livestock industries.
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